Update src/streamlit_app.py
Browse files- src/streamlit_app.py +24 -53
src/streamlit_app.py
CHANGED
|
@@ -1,73 +1,44 @@
|
|
| 1 |
-
import os
|
| 2 |
import streamlit as st
|
| 3 |
-
|
| 4 |
-
from openai import OpenAI
|
| 5 |
from transformers import pipeline
|
| 6 |
|
| 7 |
-
# -----------------------------
|
| 8 |
-
# HF Token
|
| 9 |
-
# -----------------------------
|
| 10 |
-
HF_TOKEN = st.secrets["HF_TOKEN"]
|
| 11 |
-
|
| 12 |
-
client = OpenAI(base_url="https://router.huggingface.co/v1", api_key=HF_TOKEN)
|
| 13 |
-
|
| 14 |
-
# -----------------------------
|
| 15 |
-
# ASR Model (Whisper)
|
| 16 |
-
# -----------------------------
|
| 17 |
-
@st.cache_resource
|
| 18 |
-
def load_asr():
|
| 19 |
-
return pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
| 20 |
-
|
| 21 |
-
asr = load_asr()
|
| 22 |
-
|
| 23 |
# -----------------------------
|
| 24 |
# Streamlit UI
|
| 25 |
# -----------------------------
|
| 26 |
st.title("🏥 AZ Medical Speech → Insight")
|
| 27 |
-
st.write("Audio yükləyin və tibbi insight çıxarın.")
|
| 28 |
|
| 29 |
-
uploaded_file = st.file_uploader("Audio seçin (.wav, .mp3, .ogg, .m4a)", type=["wav",
|
| 30 |
|
| 31 |
if uploaded_file is not None:
|
| 32 |
-
#
|
| 33 |
wav_path = "temp.wav"
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
st.audio(wav_path, format="audio/wav")
|
| 38 |
|
| 39 |
-
# ASR
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
st.subheader("🎧 Transcripts")
|
| 44 |
st.write("AZ:", az_text)
|
| 45 |
st.write("EN:", en_text)
|
| 46 |
|
| 47 |
-
# LLM
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
"
|
| 51 |
-
"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
)
|
| 56 |
-
},
|
| 57 |
-
{
|
| 58 |
-
"role": "user",
|
| 59 |
-
"content": f"Mətn: {az_text}\n\nXəstənin vəziyyəti barədə tibbi təhlil ver:"
|
| 60 |
-
}
|
| 61 |
-
]
|
| 62 |
-
|
| 63 |
-
completion = client.chat.completions.create(
|
| 64 |
-
model="Intelligent-Internet/II-Medical-8B-1706:featherless-ai",
|
| 65 |
-
messages=messages,
|
| 66 |
-
max_tokens=400,
|
| 67 |
-
temperature=0.4
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
llm_response = completion.choices[0].message.content.strip()
|
| 71 |
|
| 72 |
st.subheader("💡 MODEL INSIGHT")
|
| 73 |
-
st.write(
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from pydub import AudioSegment
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# -----------------------------
|
| 6 |
# Streamlit UI
|
| 7 |
# -----------------------------
|
| 8 |
st.title("🏥 AZ Medical Speech → Insight")
|
| 9 |
+
st.write("Audio faylı yükləyin və tibbi insight çıxarın.")
|
| 10 |
|
| 11 |
+
uploaded_file = st.file_uploader("Audio seçin (.wav, .mp3, .ogg, .m4a)", type=["wav","mp3","ogg","m4a"])
|
| 12 |
|
| 13 |
if uploaded_file is not None:
|
| 14 |
+
# 1️⃣ Audio → wav
|
| 15 |
wav_path = "temp.wav"
|
| 16 |
+
audio = AudioSegment.from_file(uploaded_file)
|
| 17 |
+
audio.export(wav_path, format="wav")
|
| 18 |
+
|
| 19 |
st.audio(wav_path, format="audio/wav")
|
| 20 |
|
| 21 |
+
# 2️⃣ ASR Model (Whisper, public)
|
| 22 |
+
with st.spinner("Audio tanınır..."):
|
| 23 |
+
asr = pipeline(
|
| 24 |
+
"automatic-speech-recognition",
|
| 25 |
+
model="openai/whisper-large-v2"
|
| 26 |
+
)
|
| 27 |
+
az_text = asr(wav_path, generate_kwargs={"task":"transcribe", "language":"az"})["text"].strip()
|
| 28 |
+
en_text = asr(wav_path, generate_kwargs={"task":"translate", "language":"az"})["text"].strip()
|
| 29 |
|
| 30 |
st.subheader("🎧 Transcripts")
|
| 31 |
st.write("AZ:", az_text)
|
| 32 |
st.write("EN:", en_text)
|
| 33 |
|
| 34 |
+
# 3️⃣ LLM Model (Public, instruct)
|
| 35 |
+
with st.spinner("Tibbi insight hazırlanır..."):
|
| 36 |
+
llm = pipeline(
|
| 37 |
+
"text-generation",
|
| 38 |
+
model="tiiuae/falcon-7b-instruct"
|
| 39 |
+
)
|
| 40 |
+
insight_output = llm(f"Xəstənin vəziyyəti barədə tibbi təhlil ver:\n{az_text}",
|
| 41 |
+
max_new_tokens=200)[0]["generated_text"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
st.subheader("💡 MODEL INSIGHT")
|
| 44 |
+
st.write(insight_output)
|