Spaces:
Sleeping
Sleeping
File size: 19,760 Bytes
9875835 2f594a3 9875835 cbbf6b8 9875835 2f594a3 9875835 2f594a3 9875835 2f594a3 9875835 cbbf6b8 9875835 2f594a3 9875835 2f594a3 9812781 cbbf6b8 2f594a3 9812781 2f594a3 9812781 2f594a3 9812781 2f594a3 9812781 2f594a3 9812781 2f594a3 9812781 2f594a3 9812781 2f594a3 9875835 9812781 2f594a3 9875835 cbbf6b8 2f594a3 9875835 2f594a3 9875835 cbbf6b8 9875835 2f594a3 9812781 2f594a3 9812781 2f594a3 9875835 2f594a3 9875835 9812781 9875835 9812781 9875835 9812781 9875835 9812781 9875835 9812781 9875835 2f594a3 9875835 2f594a3 9812781 2f594a3 cbbf6b8 2f594a3 9812781 9875835 2f594a3 9875835 cbbf6b8 9875835 2f594a3 9875835 cbbf6b8 2f594a3 9875835 2f594a3 9812781 9875835 2f594a3 9812781 cbbf6b8 9812781 2f594a3 9812781 9875835 2f594a3 9812781 cbbf6b8 9812781 2f594a3 9812781 cbbf6b8 9812781 9875835 2f594a3 9875835 2f594a3 9875835 2f594a3 9875835 2f594a3 9875835 2f594a3 cbbf6b8 2f594a3 9875835 2f594a3 9875835 9812781 9875835 9812781 9875835 2f594a3 9875835 2f594a3 9875835 cbbf6b8 9875835 2f594a3 cbbf6b8 2f594a3 9812781 2f594a3 cbbf6b8 2f594a3 cbbf6b8 9875835 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import streamlit as st
import pandas as pd
import numpy as np
import requests
import io
import tempfile
import os
# Try to import plotly with error handling
try:
import plotly.express as px
import plotly.graph_objects as go
PLOTLY_AVAILABLE = True
except Exception as e:
st.warning(f"Plotly import warning: {e}")
PLOTLY_AVAILABLE = False
# Page configuration
st.set_page_config(
page_title="Steam Game Recommender",
page_icon="๐ฎ",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main-header {
font-size: 3rem;
color: #1f77b4;
text-align: center;
margin-bottom: 2rem;
}
.recommendation-card {
padding: 1.5rem;
border-radius: 10px;
border: 1px solid #ddd;
margin: 1rem 0;
background-color: #f9f9f9;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.similarity-high {
background-color: #d4edda;
border-left: 5px solid #28a745;
}
.similarity-medium {
background-color: #fff3cd;
border-left: 5px solid #ffc107;
}
.similarity-low {
background-color: #f8d7da;
border-left: 5px solid #dc3545;
}
.game-title {
color: #1f77b4;
margin-bottom: 0.5rem;
}
.stat-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 1rem;
border-radius: 10px;
text-align: center;
}
</style>
""", unsafe_allow_html=True)
@st.cache_data(ttl=3600)
def load_data():
"""Load the full Steam games dataset using huggingface_hub"""
try:
st.info("๐ Initializing dataset download...")
# Method: Using huggingface_hub with snapshot download
from huggingface_hub import snapshot_download
repo_id = "FronkonGames/steam-games-dataset"
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("๐ฅ Downloading Steam games dataset from Hugging Face...")
progress_bar.progress(20)
with tempfile.TemporaryDirectory() as tmpdir:
# Download the dataset files
snapshot_download(
repo_id=repo_id,
repo_type="dataset",
allow_patterns="data/*.parquet",
local_dir=tmpdir,
local_dir_use_symlinks=False
)
status_text.text("๐ Locating data files...")
progress_bar.progress(50)
# Find and load the parquet file
data_dir = os.path.join(tmpdir, "data")
if os.path.exists(data_dir):
parquet_files = [f for f in os.listdir(data_dir) if f.endswith('.parquet')]
if parquet_files:
parquet_path = os.path.join(data_dir, parquet_files[0])
status_text.text("๐ Loading dataset into memory...")
progress_bar.progress(80)
# Read the parquet file
df = pd.read_parquet(parquet_path)
progress_bar.progress(100)
status_text.text("โ
Dataset loaded successfully!")
st.success(f"๐ Successfully loaded {len(df):,} Steam games!")
return df
else:
st.error("โ No parquet files found in the dataset")
return pd.DataFrame()
else:
st.error("โ Data directory not found")
return pd.DataFrame()
except Exception as e:
st.error(f"โ Error loading dataset: {str(e)}")
return pd.DataFrame()
@st.cache_data
def preprocess_data(df):
"""Preprocess the data for recommendations"""
if df.empty:
return df
st.info("๐ Preprocessing data...")
# Create a copy to avoid modifying cached data
df_processed = df.copy()
# Handle missing values
numeric_columns = ['Price', 'Positive', 'Negative']
for col in numeric_columns:
if col in df_processed.columns:
df_processed[col] = pd.to_numeric(df_processed[col], errors='coerce').fillna(0)
# Calculate rating score
if 'Positive' in df_processed.columns and 'Negative' in df_processed.columns:
df_processed['Total_Reviews'] = df_processed['Positive'] + df_processed['Negative']
df_processed['Rating_Score'] = np.where(
df_processed['Total_Reviews'] > 0,
df_processed['Positive'] / df_processed['Total_Reviews'] * 100,
0
)
else:
df_processed['Rating_Score'] = 50 # Default rating
# Clean text columns
text_columns = ['Genres', 'Tags', 'Categories', 'About the game', 'Name']
for col in text_columns:
if col in df_processed.columns:
df_processed[col] = df_processed[col].fillna('').astype(str)
# Ensure platform columns are boolean
platform_columns = ['Windows', 'Mac', 'Linux']
for col in platform_columns:
if col in df_processed.columns:
df_processed[col] = df_processed[col].fillna(False).astype(bool)
st.success("โ
Data preprocessing complete!")
return df_processed
class SteamGameRecommender:
def __init__(self, games_df):
self.df = games_df
def recommend_by_features(self, genres='', tags='', price_max=60,
platforms=None, min_rating=0, min_reviews=0, top_n=10):
"""Type 1: Feature-based recommendations"""
if self.df.empty:
return pd.DataFrame()
filtered_games = self.df.copy()
# Apply genre filter
if genres:
filtered_games = filtered_games[
filtered_games['Genres'].str.contains(genres, case=False, na=False)
]
# Apply tag filter
if tags:
filtered_games = filtered_games[
filtered_games['Tags'].str.contains(tags, case=False, na=False)
]
# Apply price filter
if price_max is not None:
filtered_games = filtered_games[filtered_games['Price'] <= price_max]
# Apply platform filters
if platforms:
platform_filter = False
if 'Windows' in platforms and 'Windows' in filtered_games.columns:
platform_filter = platform_filter | (filtered_games['Windows'] == True)
if 'Mac' in platforms and 'Mac' in filtered_games.columns:
platform_filter = platform_filter | (filtered_games['Mac'] == True)
if 'Linux' in platforms and 'Linux' in filtered_games.columns:
platform_filter = platform_filter | (filtered_games['Linux'] == True)
if platform_filter is not False:
filtered_games = filtered_games[platform_filter]
# Apply rating filter
if min_rating > 0:
filtered_games = filtered_games[filtered_games['Rating_Score'] >= min_rating]
# Apply minimum reviews filter
if min_reviews > 0 and 'Total_Reviews' in filtered_games.columns:
filtered_games = filtered_games[filtered_games['Total_Reviews'] >= min_reviews]
# Sort by rating and return top N
if len(filtered_games) > 0:
# Sort by rating score (descending), then by number of reviews (descending)
if 'Total_Reviews' in filtered_games.columns:
recommendations = filtered_games.sort_values(
['Rating_Score', 'Total_Reviews'],
ascending=[False, False]
).head(top_n)
else:
recommendations = filtered_games.sort_values('Rating_Score', ascending=False).head(top_n)
# Select available columns
available_columns = [
'Name', 'Genres', 'Price', 'Rating_Score', 'Positive', 'Negative',
'Release date', 'About the game', 'Total_Reviews'
]
result_columns = [col for col in available_columns if col in recommendations.columns]
return recommendations[result_columns]
else:
return pd.DataFrame()
def get_popular_games(self, top_n=10):
"""Get popular games based on reviews and ratings"""
if self.df.empty:
return pd.DataFrame()
# Filter games with substantial reviews
if 'Total_Reviews' in self.df.columns:
popular_games = self.df[self.df['Total_Reviews'] > 100].copy()
else:
popular_games = self.df.copy()
if len(popular_games) > 0:
# Sort by rating and reviews
if 'Total_Reviews' in popular_games.columns:
popular_games = popular_games.sort_values(
['Rating_Score', 'Total_Reviews'],
ascending=[False, False]
).head(top_n)
else:
popular_games = popular_games.sort_values('Rating_Score', ascending=False).head(top_n)
available_columns = [
'Name', 'Genres', 'Price', 'Rating_Score', 'Positive', 'Negative',
'Release date', 'About the game'
]
result_columns = [col for col in available_columns if col in popular_games.columns]
return popular_games[result_columns]
else:
return pd.DataFrame()
def display_game_card(game, index):
"""Display a game card with consistent formatting"""
rating = game.get('Rating_Score', 0)
# Determine card color based on rating
if rating >= 80:
card_class = "similarity-high"
rating_emoji = "๐ฅ"
elif rating >= 60:
card_class = "similarity-medium"
rating_emoji = "โญ"
else:
card_class = "similarity-low"
rating_emoji = "โ ๏ธ"
with st.container():
st.markdown(f'<div class="recommendation-card {card_class}">', unsafe_allow_html=True)
col1, col2, col3 = st.columns([3, 1, 1])
with col1:
st.markdown(f'<h3 class="game-title">{index + 1}. {game.get("Name", "Unknown")}</h3>', unsafe_allow_html=True)
st.write(f"**Genres:** {game.get('Genres', 'N/A')}")
description = game.get('About the game', '')
if description and len(description) > 50:
st.write(f"**Description:** {description[:250]}...")
with col2:
price = game.get('Price', 0)
st.metric("๐ฐ Price", f"${price:.2f}" if price > 0 else "Free")
st.metric(f"{rating_emoji} Rating", f"{rating:.1f}%")
with col3:
release_date = game.get('Release date', 'N/A')
st.write(f"**Release Date:** {release_date}")
positive = game.get('Positive', 0)
negative = game.get('Negative', 0)
total_reviews = positive + negative
if total_reviews > 0:
st.write(f"**Reviews:** ๐ {int(positive):,} | ๐ {int(negative):,}")
st.write(f"**Approval:** {(positive/total_reviews*100):.1f}%")
st.markdown('</div>', unsafe_allow_html=True)
def display_text_chart(data, title):
"""Display a simple text-based chart when plotly is not available"""
st.subheader(title)
for item, count in data.items():
st.write(f"**{item}:** {count:,} games")
def main():
# Header
st.markdown('<h1 class="main-header">๐ฎ Steam Game Recommendation System</h1>',
unsafe_allow_html=True)
st.markdown("### Type 1: Feature-Based Recommendations | Full Dataset (80,000+ Games)")
# Initialize session state
if 'last_recommendations' not in st.session_state:
st.session_state.last_recommendations = None
# Load data
df = load_data()
if df.empty:
st.error("""
โ Unable to load the dataset. This might be due to:
- Network connectivity issues
- Hugging Face API limitations
- Dataset availability
Please try refreshing the page or check back later.
""")
return
# Preprocess data
df = preprocess_data(df)
recommender = SteamGameRecommender(df)
if df.empty:
return
# Sidebar for filters
st.sidebar.title("๐ Filter Games")
st.sidebar.markdown(f"<div class='stat-card'><h3>๐ Loaded</h3><h2>{len(df):,}</h2><p>Games</p></div>",
unsafe_allow_html=True)
# Genre selection
st.sidebar.subheader("๐ฏ Genres & Tags")
if 'Genres' in df.columns:
all_genres = set()
for genres in df['Genres'].head(5000):
if isinstance(genres, str):
for genre in genres.split(','):
genre_clean = genre.strip()
if genre_clean and len(genre_clean) > 1:
all_genres.add(genre_clean)
all_genres = sorted(list(all_genres))
selected_genre = st.sidebar.selectbox("Select Genre", [""] + all_genres)
else:
selected_genre = ""
# Tag selection
if 'Tags' in df.columns:
all_tags = set()
for tags in df['Tags'].head(5000):
if isinstance(tags, str):
for tag in tags.split(','):
tag_clean = tag.strip()
if tag_clean and len(tag_clean) > 1:
all_tags.add(tag_clean)
all_tags = sorted(list(all_tags))[:150]
selected_tag = st.sidebar.selectbox("Select Tag (Optional)", [""] + all_tags)
else:
selected_tag = ""
# Price and rating filters
st.sidebar.subheader("๐ฐ Price & Rating")
max_price = st.sidebar.slider("Maximum Price ($)", 0, 100, 60)
min_rating = st.sidebar.slider("Minimum Rating (%)", 0, 100, 70)
min_reviews = st.sidebar.slider("Minimum Reviews", 0, 1000, 10)
# Platforms
st.sidebar.subheader("๐ฅ๏ธ Platforms")
windows = st.sidebar.checkbox("Windows", value=True)
mac = st.sidebar.checkbox("Mac")
linux = st.sidebar.checkbox("Linux")
platforms = []
if windows: platforms.append('Windows')
if mac: platforms.append('Mac')
if linux: platforms.append('Linux')
# Number of recommendations
st.sidebar.subheader("๐ Results")
num_recommendations = st.sidebar.slider("Number of Recommendations", 5, 50, 15)
# Recommendation buttons
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("๐ฏ Get Recommendations", type="primary", use_container_width=True):
with st.spinner(f'๐ Searching through {len(df):,} games...'):
recommendations = recommender.recommend_by_features(
genres=selected_genre,
tags=selected_tag,
price_max=max_price,
platforms=platforms,
min_rating=min_rating,
min_reviews=min_reviews,
top_n=num_recommendations
)
st.session_state.last_recommendations = recommendations
with col2:
if st.button("๐ฅ Popular Games", use_container_width=True):
with st.spinner('Finding popular games...'):
recommendations = recommender.get_popular_games(top_n=num_recommendations)
st.session_state.last_recommendations = recommendations
# Display recommendations
if st.session_state.last_recommendations is not None:
recommendations = st.session_state.last_recommendations
if len(recommendations) > 0:
st.success(f"๐ Found {len(recommendations)} games matching your criteria!")
for idx, (_, game) in enumerate(recommendations.iterrows()):
display_game_card(game, idx)
# Statistics
st.subheader("๐ Recommendation Statistics")
col1, col2, col3, col4 = st.columns(4)
with col1:
avg_price = recommendations['Price'].mean()
st.metric("Average Price", f"${avg_price:.2f}")
with col2:
avg_rating = recommendations['Rating_Score'].mean()
st.metric("Average Rating", f"{avg_rating:.1f}%")
with col3:
total_positive = recommendations.get('Positive', pd.Series([0])).sum()
st.metric("Total ๐ Reviews", f"{int(total_positive):,}")
with col4:
st.metric("Games Found", len(recommendations))
else:
st.warning("No games found matching your criteria. Try adjusting your filters.")
# Main area when no search is performed
else:
st.info("""
๐ **Welcome to the Steam Game Recommender!**
Use the sidebar filters to find your perfect games from our database of **80,000+ games**.
""")
# Dataset statistics
if not df.empty:
col1, col2, col3, col4 = st.columns(4)
with col1:
total_games = len(df)
st.metric("Total Games", f"{total_games:,}")
with col2:
avg_price = df['Price'].mean()
st.metric("Average Price", f"${avg_price:.2f}")
with col3:
rated_games = df[df['Rating_Score'] > 0]
avg_rating = rated_games['Rating_Score'].mean() if len(rated_games) > 0 else 0
st.metric("Average Rating", f"{avg_rating:.1f}%")
with col4:
free_games = len(df[df['Price'] == 0])
st.metric("Free Games", f"{free_games:,}")
# Popular genres display
st.subheader("๐ฏ Most Popular Genres")
if 'Genres' in df.columns:
genre_counts = pd.Series([
genre for genres in df['Genres'].head(10000)
for genre in str(genres).split(',')
if genre.strip() and len(genre.strip()) > 1
]).value_counts().head(15)
if len(genre_counts) > 0:
if PLOTLY_AVAILABLE:
try:
fig_genres = px.bar(
x=genre_counts.values,
y=genre_counts.index,
orientation='h',
title='Top 15 Game Genres in Database',
labels={'x': 'Number of Games', 'y': 'Genre'},
color=genre_counts.values,
color_continuous_scale='viridis'
)
fig_genres.update_layout(showlegend=False)
st.plotly_chart(fig_genres, use_container_width=True)
except Exception as e:
st.warning(f"Plotly chart error: {e}")
display_text_chart(genre_counts.head(10), "Top 10 Genres")
else:
display_text_chart(genre_counts.head(10), "Top 10 Genres")
if __name__ == "__main__":
main() |