Update app.py
Browse files
app.py
CHANGED
|
@@ -4,8 +4,7 @@ import torch
|
|
| 4 |
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
| 5 |
from app.questions import get_question
|
| 6 |
|
| 7 |
-
# Load
|
| 8 |
-
whisper_model = whisper.load_model("small")
|
| 9 |
confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/final_confidence')
|
| 10 |
confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/final_confidence')
|
| 11 |
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model')
|
|
@@ -46,19 +45,19 @@ def predict_relevance(question, answer):
|
|
| 46 |
context_model.eval()
|
| 47 |
with torch.no_grad():
|
| 48 |
outputs = context_model(**inputs)
|
| 49 |
-
|
| 50 |
-
return "Relevant" if
|
| 51 |
|
| 52 |
# Confidence prediction
|
| 53 |
def predict_confidence(question, answer, threshold=0.4):
|
| 54 |
-
if not answer.strip():
|
| 55 |
return "Not Confident"
|
| 56 |
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
|
| 57 |
confidence_model.eval()
|
| 58 |
with torch.no_grad():
|
| 59 |
outputs = confidence_model(**inputs)
|
| 60 |
-
|
| 61 |
-
return "Confident" if
|
| 62 |
|
| 63 |
# Emotion detection
|
| 64 |
def detect_emotion(answer):
|
|
@@ -66,7 +65,8 @@ def detect_emotion(answer):
|
|
| 66 |
return "No Answer", ""
|
| 67 |
result = emotion_pipe(answer)
|
| 68 |
label = result[0][0]["label"].lower()
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
# Question navigation (non-tech)
|
| 72 |
def show_non_tech_question():
|
|
@@ -76,8 +76,7 @@ def show_non_tech_question():
|
|
| 76 |
def next_non_tech_question():
|
| 77 |
global current_non_tech_index
|
| 78 |
current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions)
|
| 79 |
-
|
| 80 |
-
return non_technical_questions[current_non_tech_index], "", ""
|
| 81 |
|
| 82 |
# Question navigation (tech)
|
| 83 |
def show_tech_question():
|
|
@@ -87,33 +86,34 @@ def show_tech_question():
|
|
| 87 |
def next_tech_question():
|
| 88 |
global current_tech_index
|
| 89 |
current_tech_index = (current_tech_index + 1) % len(technical_questions)
|
| 90 |
-
|
| 91 |
-
return technical_questions[current_tech_index], "", "", ""
|
| 92 |
|
| 93 |
# Transcribe + analyze (non-technical)
|
| 94 |
def transcribe_and_analyze_non_tech(audio, question):
|
| 95 |
try:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
mel = whisper.log_mel_spectrogram(
|
| 99 |
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
|
| 100 |
-
|
| 101 |
-
emotion_text, emoji = detect_emotion(
|
| 102 |
-
return
|
| 103 |
except Exception as e:
|
| 104 |
-
return f"Error: {e}", "β"
|
| 105 |
|
| 106 |
# Transcribe + analyze (technical)
|
| 107 |
def transcribe_and_analyze_tech(audio, question):
|
| 108 |
try:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
mel = whisper.log_mel_spectrogram(
|
| 112 |
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
-
return f"Error: {e}", "", ""
|
| 117 |
|
| 118 |
# UI layout
|
| 119 |
with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo:
|
|
@@ -124,44 +124,35 @@ with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo:
|
|
| 124 |
# NON-TECHNICAL TAB
|
| 125 |
with gr.Tab("Non-Technical"):
|
| 126 |
gr.Markdown("### Emotional Context Analysis (π§ + π)")
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
btn1.click(
|
| 140 |
-
fn=next_non_tech_question,
|
| 141 |
-
inputs=[],
|
| 142 |
-
outputs=[q1, t1, e1]
|
| 143 |
-
)
|
| 144 |
|
| 145 |
# TECHNICAL TAB
|
| 146 |
with gr.Tab("Technical"):
|
| 147 |
gr.Markdown("### Technical Question Analysis (π + π€)")
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
fn=next_tech_question,
|
| 163 |
-
inputs=[],
|
| 164 |
-
outputs=[q2, t2, c2, f2]
|
| 165 |
-
)
|
| 166 |
|
| 167 |
demo.launch(share=True)
|
|
|
|
| 4 |
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
| 5 |
from app.questions import get_question
|
| 6 |
|
| 7 |
+
# Load modelswhisper_model = whisper.load_model("small")
|
|
|
|
| 8 |
confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/final_confidence')
|
| 9 |
confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/final_confidence')
|
| 10 |
context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model')
|
|
|
|
| 45 |
context_model.eval()
|
| 46 |
with torch.no_grad():
|
| 47 |
outputs = context_model(**inputs)
|
| 48 |
+
probabilities = torch.softmax(outputs.logits, dim=-1)
|
| 49 |
+
return "Relevant" if probabilities[0, 1] > 0.5 else "Irrelevant"
|
| 50 |
|
| 51 |
# Confidence prediction
|
| 52 |
def predict_confidence(question, answer, threshold=0.4):
|
| 53 |
+
if not isinstance(answer, str) or not answer.strip():
|
| 54 |
return "Not Confident"
|
| 55 |
inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True)
|
| 56 |
confidence_model.eval()
|
| 57 |
with torch.no_grad():
|
| 58 |
outputs = confidence_model(**inputs)
|
| 59 |
+
probabilities = torch.softmax(outputs.logits, dim=-1)
|
| 60 |
+
return "Confident" if probabilities[0, 1].item() > threshold else "Not Confident"
|
| 61 |
|
| 62 |
# Emotion detection
|
| 63 |
def detect_emotion(answer):
|
|
|
|
| 65 |
return "No Answer", ""
|
| 66 |
result = emotion_pipe(answer)
|
| 67 |
label = result[0][0]["label"].lower()
|
| 68 |
+
emotion_text, emoji = interview_emotion_map.get(label, ("Unknown", "β"))
|
| 69 |
+
return emotion_text, emoji
|
| 70 |
|
| 71 |
# Question navigation (non-tech)
|
| 72 |
def show_non_tech_question():
|
|
|
|
| 76 |
def next_non_tech_question():
|
| 77 |
global current_non_tech_index
|
| 78 |
current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions)
|
| 79 |
+
return non_technical_questions[current_non_tech_index], None, "", ""
|
|
|
|
| 80 |
|
| 81 |
# Question navigation (tech)
|
| 82 |
def show_tech_question():
|
|
|
|
| 86 |
def next_tech_question():
|
| 87 |
global current_tech_index
|
| 88 |
current_tech_index = (current_tech_index + 1) % len(technical_questions)
|
| 89 |
+
return technical_questions[current_tech_index], None, "", "", ""
|
|
|
|
| 90 |
|
| 91 |
# Transcribe + analyze (non-technical)
|
| 92 |
def transcribe_and_analyze_non_tech(audio, question):
|
| 93 |
try:
|
| 94 |
+
audio = whisper.load_audio(audio)
|
| 95 |
+
audio = whisper.pad_or_trim(audio)
|
| 96 |
+
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
| 97 |
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
|
| 98 |
+
transcribed_text = result.text
|
| 99 |
+
emotion_text, emoji = detect_emotion(transcribed_text)
|
| 100 |
+
return transcribed_text, f"{emotion_text} {emoji}"
|
| 101 |
except Exception as e:
|
| 102 |
+
return f"Error: {str(e)}", "β"
|
| 103 |
|
| 104 |
# Transcribe + analyze (technical)
|
| 105 |
def transcribe_and_analyze_tech(audio, question):
|
| 106 |
try:
|
| 107 |
+
audio = whisper.load_audio(audio)
|
| 108 |
+
audio = whisper.pad_or_trim(audio)
|
| 109 |
+
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
| 110 |
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
|
| 111 |
+
transcribed_text = result.text
|
| 112 |
+
context_result = predict_relevance(question, transcribed_text)
|
| 113 |
+
confidence_result = predict_confidence(question, transcribed_text)
|
| 114 |
+
return transcribed_text, context_result, confidence_result
|
| 115 |
except Exception as e:
|
| 116 |
+
return f"Error: {str(e)}", "", ""
|
| 117 |
|
| 118 |
# UI layout
|
| 119 |
with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo:
|
|
|
|
| 124 |
# NON-TECHNICAL TAB
|
| 125 |
with gr.Tab("Non-Technical"):
|
| 126 |
gr.Markdown("### Emotional Context Analysis (π§ + π)")
|
| 127 |
+
question_display_1 = gr.Textbox(label="Interview Question", value=show_non_tech_question(), interactive=False)
|
| 128 |
+
audio_input_1 = gr.Audio(type="filepath", label="Record Your Answer")
|
| 129 |
+
transcribed_text_1 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
|
| 130 |
+
emotion_output = gr.Textbox(label="Detected Emotion", interactive=False)
|
| 131 |
+
|
| 132 |
+
audio_input_1.change(fn=transcribe_and_analyze_non_tech,
|
| 133 |
+
inputs=[audio_input_1, question_display_1],
|
| 134 |
+
outputs=[transcribed_text_1, emotion_output])
|
| 135 |
+
|
| 136 |
+
next_button_1 = gr.Button("Next Question")
|
| 137 |
+
next_button_1.click(fn=next_non_tech_question,
|
| 138 |
+
outputs=[question_display_1, audio_input_1, transcribed_text_1, emotion_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
# TECHNICAL TAB
|
| 141 |
with gr.Tab("Technical"):
|
| 142 |
gr.Markdown("### Technical Question Analysis (π + π€)")
|
| 143 |
+
question_display_2 = gr.Textbox(label="Interview Question", value=show_tech_question(), interactive=False)
|
| 144 |
+
audio_input_2 = gr.Audio(type="filepath", label="Record Your Answer")
|
| 145 |
+
transcribed_text_2 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4)
|
| 146 |
+
context_analysis_result = gr.Textbox(label="Context Analysis", interactive=False)
|
| 147 |
+
confidence_analysis_result = gr.Textbox(label="Confidence Analysis", interactive=False)
|
| 148 |
+
|
| 149 |
+
audio_input_2.change(fn=transcribe_and_analyze_tech,
|
| 150 |
+
inputs=[audio_input_2, question_display_2],
|
| 151 |
+
outputs=[transcribed_text_2, context_analysis_result, confidence_analysis_result])
|
| 152 |
+
|
| 153 |
+
next_button_2 = gr.Button("Next Question")
|
| 154 |
+
next_button_2.click(fn=next_tech_question,
|
| 155 |
+
outputs=[question_display_2, audio_input_2, transcribed_text_2,
|
| 156 |
+
context_analysis_result, confidence_analysis_result])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
demo.launch(share=True)
|