File size: 54,211 Bytes
53cf6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20dc709
 
 
53cf6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20dc709
53cf6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20dc709
 
53cf6c0
 
 
20dc709
 
53cf6c0
20dc709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
 
 
 
20dc709
 
 
 
 
 
 
 
 
 
 
 
53cf6c0
 
 
 
 
20dc709
 
 
 
53cf6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20dc709
 
 
 
 
 
 
53cf6c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20dc709
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
import os, traceback, asyncio, json, re, ast
from datetime import datetime, timedelta
from functools import wraps
from backoff import on_exception, expo
from openai import OpenAI, RateLimitError, APITimeoutError, APIStatusError
import numpy as np, httpx, pandas as pd
from gnews import GNews
import feedparser

NVIDIA_API_KEY = os.getenv("NVIDIA_API_KEY")
PRIMARY_MODEL = "nvidia/llama-3.1-nemotron-ultra-253b-v1"
NVIDIA_RATE_LIMIT_CALLS = 20
NVIDIA_RATE_LIMIT_PERIOD = 60

CRYPTO_RSS_FEEDS = {
    "Cointelegraph": "https://cointelegraph.com/rss",
    "CoinDesk": "https://www.coindesk.com/arc/outboundfeeds/rss/",
    "CryptoSlate": "https://cryptoslate.com/feed/",
    "NewsBTC": "https://www.newsbtc.com/feed/",
    "Bitcoin.com": "https://news.bitcoin.com/feed/"
}

class NewsFetcher:
    def __init__(self):
        self.http_client = httpx.AsyncClient(
            timeout=10.0, follow_redirects=True,
            headers={
                'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
                'Accept': 'application/json, text/plain, */*',
                'Accept-Language': 'en-US,en;q=0.9',
                'Cache-Control': 'no-cache'
            }
        )
        self.gnews = GNews(language='en', country='US', period='3h', max_results=8)

    async def _fetch_from_gnews(self, symbol: str) -> list:
        try:
            base_symbol = symbol.split("/")[0]
            query = f'"{base_symbol}" cryptocurrency -bitcoin -ethereum -BTC -ETH'
            print(f"📰 Fetching specific news from GNews for {base_symbol}...")
            news_items = await asyncio.to_thread(self.gnews.get_news, query)
            print(f"✅ GNews fetched {len(news_items)} specific items for {base_symbol}.")
            return news_items
        except Exception as e:
            print(f"❌ Failed to fetch specific news from GNews for {symbol}: {e}")
            return []

    async def _fetch_from_rss_feed(self, feed_url: str, source_name: str, symbol: str) -> list:
        try:
            base_symbol = symbol.split('/')[0]
            print(f"📰 Fetching specific news from {source_name} RSS for {base_symbol}...")
            max_redirects = 2
            current_url = feed_url
            for attempt in range(max_redirects):
                try:
                    response = await self.http_client.get(current_url)
                    response.raise_for_status()
                    break
                except httpx.HTTPStatusError as e:
                    if e.response.status_code in [301, 302, 307, 308] and 'Location' in e.response.headers:
                        current_url = e.response.headers['Location']
                        print(f"🔄 Following redirect to: {current_url}")
                        continue
                    else: 
                        raise
            feed = feedparser.parse(response.text)
            news_items = []
            search_term = base_symbol.lower()
            for entry in feed.entries[:15]:
                title = entry.title.lower() if hasattr(entry, 'title') else ''
                summary = entry.summary.lower() if hasattr(entry, 'summary') else entry.description.lower() if hasattr(entry, 'description') else ''
                if search_term in title or search_term in summary:
                    news_items.append({
                        'title': entry.title, 
                        'description': summary, 
                        'source': source_name,
                        'published': entry.get('published', '')
                    })
            print(f"✅ {source_name} RSS fetched {len(news_items)} specific items for {base_symbol}.")
            return news_items
        except Exception as e:
            print(f"❌ Failed to fetch specific news from {source_name} RSS for {symbol}: {e}")
            return []
            
    async def get_news_for_symbol(self, symbol: str) -> str:
        base_symbol = symbol.split("/")[0]
        tasks = [self._fetch_from_gnews(symbol)]
        for name, url in CRYPTO_RSS_FEEDS.items():
            tasks.append(self._fetch_from_rss_feed(url, name, symbol))
        
        results = await asyncio.gather(*tasks, return_exceptions=True)
        all_news_text = []
        
        for result in results:
            if isinstance(result, Exception):
                print(f"⚠️ A news source failed with error: {result}")
                continue
            for item in result:
                if self._is_directly_relevant_to_symbol(item, base_symbol):
                    title = item.get('title', 'No Title')
                    description = item.get('description', 'No Description')
                    source = item.get('source', 'Unknown Source')
                    published = item.get('published', '')
                    
                    news_entry = f"[{source}] {title}. {description}"
                    if published:
                        news_entry += f" (Published: {published})"
                    
                    all_news_text.append(news_entry)
        
        if not all_news_text: 
            return f"📰 No specific news found for {base_symbol} in the last 3 hours."
        
        important_news = all_news_text[:5]
        return " | ".join(important_news)

    def _is_directly_relevant_to_symbol(self, news_item, base_symbol):
        title = news_item.get('title', '').lower()
        description = news_item.get('description', '').lower()
        symbol_lower = base_symbol.lower()
        
        if symbol_lower not in title and symbol_lower not in description:
            return False
        
        crypto_keywords = [
            'crypto', 'cryptocurrency', 'token', 'blockchain', 
            'price', 'market', 'trading', 'exchange', 'defi',
            'coin', 'digital currency', 'altcoin'
        ]
        
        return any(keyword in title or keyword in description for keyword in crypto_keywords)

class PatternAnalysisEngine:
    def __init__(self, llm_service):
        self.llm = llm_service
        self.pattern_templates = {
            'reversal': ['head_shoulders', 'double_top', 'triple_top', 'rising_wedge', 'falling_wedge'],
            'continuation': ['flags', 'pennants', 'triangles', 'rectangles', 'cup_and_handle'],
            'consolidation': ['symmetrical_triangle', 'ascending_triangle', 'descending_triangle']
        }
    
    def _format_chart_data_for_llm(self, ohlcv_data):
        """تنسيق بيانات الشموع بشكل محسن للنموذج"""
        if not ohlcv_data or len(ohlcv_data) < 20:
            return "❌ Insufficient chart data for pattern analysis (minimum 20 candles required)"
            
        try:
            # استخدام آخر 50 شمعة للتحليل الدقيق
            candles_to_analyze = ohlcv_data[-50:] if len(ohlcv_data) > 50 else ohlcv_data
            
            chart_description = [
                "📊 **CANDLE DATA FOR PATTERN ANALYSIS:**",
                f"Total candles available: {len(ohlcv_data)}",
                f"Candles used for analysis: {len(candles_to_analyze)}",
                ""
            ]
            
            # إضافة معلومات عن الشموع الرئيسية
            if len(candles_to_analyze) >= 10:
                recent_candles = candles_to_analyze[-10:]
                chart_description.append("**Recent 10 Candles (Latest First):**")
                for i, candle in enumerate(reversed(recent_candles)):
                    candle_idx = len(candles_to_analyze) - i
                    desc = f"Candle {candle_idx}: O:{candle[1]:.6f} H:{candle[2]:.6f} L:{candle[3]:.6f} C:{candle[4]:.6f} V:{candle[5]:.0f}"
                    chart_description.append(f"  {desc}")
            
            # تحليل الاتجاه العام
            if len(candles_to_analyze) >= 2:
                first_close = candles_to_analyze[0][4]
                last_close = candles_to_analyze[-1][4]
                price_change = ((last_close - first_close) / first_close) * 100
                trend = "📈 BULLISH" if price_change > 2 else "📉 BEARISH" if price_change < -2 else "➡️ SIDEWAYS"
                
                # حساب أعلى وأقل سعر
                highs = [c[2] for c in candles_to_analyze]
                lows = [c[3] for c in candles_to_analyze]
                high_max = max(highs)
                low_min = min(lows)
                volatility = ((high_max - low_min) / low_min) * 100
                
                chart_description.extend([
                    "",
                    "**MARKET STRUCTURE ANALYSIS:**",
                    f"Trend Direction: {trend}",
                    f"Price Change: {price_change:+.2f}%",
                    f"Volatility Range: {volatility:.2f}%",
                    f"Highest Price: {high_max:.6f}",
                    f"Lowest Price: {low_min:.6f}"
                ])
            
            # تحليل حجم التداول
            if len(candles_to_analyze) >= 5:
                volumes = [c[5] for c in candles_to_analyze]
                avg_volume = sum(volumes) / len(volumes)
                current_volume = candles_to_analyze[-1][5]
                volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1
                
                volume_signal = "🚀 HIGH" if volume_ratio > 2 else "📊 NORMAL" if volume_ratio > 0.5 else "📉 LOW"
                chart_description.extend([
                    "",
                    "**VOLUME ANALYSIS:**",
                    f"Current Volume: {current_volume:,.0f}",
                    f"Volume Ratio: {volume_ratio:.2f}x average",
                    f"Volume Signal: {volume_signal}"
                ])
            
            return "\n".join(chart_description)
            
        except Exception as e:
            return f"❌ Error formatting chart data: {str(e)}"
    
    async def analyze_chart_patterns(self, symbol, ohlcv_data):
        """تحليل الأنماط البيانية مع تحسينات كبيرة"""
        try:
            if not ohlcv_data or len(ohlcv_data) < 20:
                return {
                    "pattern_detected": "insufficient_data",
                    "pattern_confidence": 0.1,
                    "pattern_strength": "weak",
                    "predicted_direction": "unknown",
                    "pattern_analysis": "Insufficient candle data for pattern analysis"
                }
            
            chart_text = self._format_chart_data_for_llm(ohlcv_data)
            
            prompt = f"""
            🔍 **CRYPTO CHART PATTERN ANALYSIS REQUEST**
            
            You are an expert cryptocurrency technical analyst with 10+ years experience. 
            Analyze the following candle data for {symbol} and identify STRONG, ACTIONABLE patterns.

            **ANALYSIS REQUIREMENTS:**
            1. Focus on CLEAR, HIGH-PROBABILITY patterns only
            2. Consider volume confirmation for all patterns
            3. Evaluate pattern strength based on candle formations
            4. Provide SPECIFIC price targets and stop levels
            5. Assess timeframe suitability for 5-45 minute trades

            **CANDLE DATA FOR ANALYSIS:**
            {chart_text}

            **PATTERNS TO LOOK FOR:**
            🎯 REVERSAL PATTERNS: Head & Shoulders, Double Top/Bottom, Triple Top/Bottom
            🎯 CONTINUATION PATTERNS: Flags, Pennants, Triangles, Rectangles  
            🎯 CONSOLIDATION PATTERNS: Symmetrical/Descending/Ascending Triangles
            🎯 SUPPORT/RESISTANCE: Key levels from recent highs/lows

            **MANDATORY OUTPUT FORMAT (JSON):**
            {{
                "pattern_detected": "pattern_name",
                "pattern_confidence": 0.85,
                "pattern_strength": "strong/medium/weak",
                "predicted_direction": "up/down/sideways",
                "predicted_movement_percent": 5.50,
                "timeframe_expectation": "15-25 minutes",
                "entry_suggestion": 0.1234,
                "target_suggestion": 0.1357,
                "stop_suggestion": 0.1189,
                "key_support": 0.1200,
                "key_resistance": 0.1300,
                "pattern_analysis": "Detailed explanation of the pattern, why it's valid, and volume confirmation"
            }}

            **CRITICAL:**
            - Only identify patterns if you have ≥ 70% confidence
            - MUST consider volume in pattern confirmation
            - Provide SPECIFIC numbers for entry/target/stop
            - If no clear pattern, set pattern_detected to "no_clear_pattern"
            """
            
            print(f"🔍 Analyzing chart patterns for {symbol} with {len(ohlcv_data)} candles...")
            response = await self.llm._call_llm(prompt)
            
            pattern_result = self._parse_pattern_response(response)
            if pattern_result and pattern_result.get('pattern_detected') != 'no_clear_pattern':
                print(f"✅ Pattern detected for {symbol}: {pattern_result.get('pattern_detected')} "
                      f"(Confidence: {pattern_result.get('pattern_confidence', 0):.2f})")
            else:
                print(f"ℹ️ No clear patterns for {symbol}")
                
            return pattern_result
            
        except Exception as e:
            print(f"❌ Chart pattern analysis failed for {symbol}: {e}")
            return None

    def _parse_pattern_response(self, response_text):
        """تحليل رد النموذج مع تحسينات التعامل مع الأخطاء"""
        try:
            # البحث عن JSON في الرد
            json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
            if not json_match:
                return {
                    "pattern_detected": "parse_error",
                    "pattern_confidence": 0.1,
                    "pattern_analysis": "Could not parse pattern analysis response"
                }
            
            pattern_data = json.loads(json_match.group())
            
            # التحقق من الحقول الأساسية
            required = ['pattern_detected', 'pattern_confidence', 'predicted_direction']
            if not all(field in pattern_data for field in required):
                return {
                    "pattern_detected": "incomplete_data",
                    "pattern_confidence": 0.1,
                    "pattern_analysis": "Incomplete pattern analysis data"
                }
            
            return pattern_data
            
        except Exception as e:
            print(f"❌ Error parsing pattern response: {e}")
            return {
                "pattern_detected": "parse_error",
                "pattern_confidence": 0.1,
                "pattern_analysis": f"Error parsing pattern analysis: {str(e)}"
            }

class LLMService:
    def __init__(self, api_key=NVIDIA_API_KEY, model_name=PRIMARY_MODEL, temperature=0.7):
        self.api_key = api_key
        self.model_name = model_name
        self.temperature = temperature
        self.client = OpenAI(base_url="https://integrate.api.nvidia.com/v1", api_key=self.api_key)
        self.news_fetcher = NewsFetcher()
        self.pattern_engine = PatternAnalysisEngine(self)
        self.semaphore = asyncio.Semaphore(5)

    def _rate_limit_nvidia_api(func):
        @wraps(func)
        @on_exception(expo, RateLimitError, max_tries=5)
        async def wrapper(*args, **kwargs):
            return await func(*args, **kwargs)
        return wrapper

    async def get_trading_decision(self, data_payload: dict):
        try:
            symbol = data_payload.get('symbol', 'unknown')
            target_strategy = data_payload.get('target_strategy', 'GENERIC')
            print(f"🧠 Starting LLM analysis for {symbol} with strategy: {target_strategy}...")
            
            news_text = await self.news_fetcher.get_news_for_symbol(symbol)
            pattern_analysis = await self._get_pattern_analysis(data_payload)
            prompt = self._create_enhanced_trading_prompt(data_payload, news_text, pattern_analysis)
            
            print(f"🧠 Sending enhanced prompt to LLM for {symbol}...")
            async with self.semaphore:
                response = await self._call_llm(prompt)
            
            decision_dict = self._parse_llm_response_enhanced(response, target_strategy, symbol)
            if decision_dict:
                decision_dict['model_source'] = self.model_name
                decision_dict['pattern_analysis'] = pattern_analysis
                
                # ✅ التحقق النهائي من الاستراتيجية
                final_strategy = decision_dict.get('strategy')
                if not final_strategy or final_strategy == 'unknown' or final_strategy is None:
                    decision_dict['strategy'] = target_strategy
                    print(f"🔧 Final strategy correction for {symbol}: {target_strategy}")
                else:
                    print(f"✅ LLM successfully selected strategy '{final_strategy}' for {symbol}.")
                    
                print(f"✅ LLM analysis completed for {symbol} - Strategy: {decision_dict['strategy']}")
            else:
                print(f"❌ LLM analysis failed for {symbol}")
                return local_analyze_opportunity(data_payload)
            
            return decision_dict
            
        except Exception as e:
            print(f"❌ An error occurred while getting LLM decision for {data_payload.get('symbol', 'unknown')}: {e}")
            traceback.print_exc()
            return local_analyze_opportunity(data_payload)
    
    def _parse_llm_response_enhanced(self, response_text: str, fallback_strategy: str = 'GENERIC', symbol: str = 'unknown') -> dict:
        """✅ الإصلاح النهائي: تحليل رد الـ LLM مع إعطاء الثقة لقراره"""
        try:
            json_match = re.search(r'```json\n(.*?)\n```', response_text, re.DOTALL)
            if json_match:
                json_str = json_match.group(1).strip()
            else:
                json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
                if json_match:
                    json_str = json_match.group()
                else:
                    print(f"❌ No JSON found in LLM response for {symbol}: {response_text}")
                    return None

            decision_data = json.loads(json_str)

            required_fields = ['action', 'reasoning', 'risk_assessment', 'trade_type',
                             'stop_loss', 'take_profit', 'expected_target_minutes', 'confidence_level']

            for field in required_fields:
                if field not in decision_data:
                    print(f"❌ Missing required field '{field}' in LLM response for {symbol}")
                    return None

            strategy_value = decision_data.get('strategy')
            # 💡 التحقق: هل الاستراتيجية التي أرجعها النموذج صالحة؟
            if not strategy_value or strategy_value == 'unknown' or strategy_value is None:
                # إذا كانت غير صالحة، استخدم الاستراتيجية العامة كخطة بديلة آمنة
                print(f"⚠️ LLM returned invalid strategy '{strategy_value}' for {symbol}. Forcing fallback: {fallback_strategy}")
                decision_data['strategy'] = fallback_strategy
            else:
                # إذا كانت صالحة، اعتمدها مباشرةً!
                print(f"✅ LLM successfully selected strategy '{strategy_value}' for {symbol}.")

            return decision_data

        except Exception as e:
            print(f"❌ Unexpected error parsing LLM response for {symbol}: {e}")
            return None

    async def _get_pattern_analysis(self, data_payload):
        try:
            symbol = data_payload['symbol']
            # ✅ الحصول على بيانات الشموع الخام من البيانات المعالجة
            if 'raw_ohlcv' in data_payload and '1h' in data_payload['raw_ohlcv']:
                ohlcv_data = data_payload['raw_ohlcv']['1h']
                if ohlcv_data and len(ohlcv_data) >= 20:
                    print(f"🔍 Using raw OHLCV data for pattern analysis: {len(ohlcv_data)} candles")
                    return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
            
            # ✅ الحصول على بيانات OHLCV من 'advanced_indicators' كبديل
            if 'advanced_indicators' in data_payload and '1h' in data_payload['advanced_indicators']:
                ohlcv_data = data_payload['advanced_indicators']['1h']
                if ohlcv_data and len(ohlcv_data) >= 20:
                    print(f"🔍 Using advanced indicators data for pattern analysis: {len(ohlcv_data)} candles")
                    return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
            
            print(f"⚠️ No sufficient OHLCV data for pattern analysis on {symbol}")
            return None
        except Exception as e:
            print(f"⚠️ Pattern analysis failed for {data_payload.get('symbol')}: {e}")
            return None
    
    def _create_enhanced_trading_prompt(self, payload: dict, news_text: str, pattern_analysis: dict) -> str:
        symbol = payload.get('symbol', 'N/A')
        current_price = payload.get('current_price', 'N/A')
        reasons = payload.get('reasons_for_candidacy', [])
        sentiment_data = payload.get('sentiment_data', {})
        advanced_indicators = payload.get('advanced_indicators', {})
        strategy_scores = payload.get('strategy_scores', {})
        recommended_strategy = payload.get('recommended_strategy', 'N/A')
        target_strategy = payload.get('target_strategy', 'GENERIC')
        final_score = payload.get('final_score', 'N/A')
        enhanced_final_score = payload.get('enhanced_final_score', 'N/A')
        whale_data = payload.get('whale_data', {})
        
        general_whale_activity = sentiment_data.get('general_whale_activity', {})
        
        final_score_display = f"{final_score:.2f}" if isinstance(final_score, (int, float)) else str(final_score)
        enhanced_score_display = f"{enhanced_final_score:.2f}" if isinstance(enhanced_final_score, (int, float)) else str(enhanced_final_score)

        indicators_summary = self._format_advanced_indicators(advanced_indicators)
        strategies_summary = self._format_strategies_analysis(strategy_scores, recommended_strategy)
        pattern_summary = self._format_pattern_analysis_enhanced(pattern_analysis, payload)
        
        # 🆕 استخدام البيانات المحسنة من data_manager
        whale_analysis_section = self._format_enhanced_whale_analysis_for_llm(general_whale_activity, whale_data, symbol)

        strategy_instructions = {
            "AGGRESSIVE_GROWTH": "**Strategy: AGGRESSIVE_GROWTH**: Focus on strong price movements (5-10%) and accept higher risk for higher rewards. Aim for 8-15% on successful trades.",
            "DEFENSIVE_GROWTH": "**Strategy: DEFENSIVE_GROWTH**: Look for safer 3-6% moves with tight stop-losses. Aim for 4-8% while protecting capital.",
            "CONSERVATIVE": "**Strategy: CONSERVATIVE**: Focus on only 2-4% moves with wider stop-losses. Aim for 2-5% with minimal risk.",
            "HIGH_FREQUENCY": "**Strategy: HIGH_FREQUENCY**: Look for quick 1-3% scalps with very tight stop-losses. Aim for 1-4% on multiple trades.",
            "WHALE_FOLLOWING": "**Strategy: WHALE_FOLLOWING**: Prioritize whale tracking signals and unusual volume. Aim for 5-12% with medium risk.",
            "GENERIC": "**Strategy: GENERIC**: Make balanced decisions considering risk and reward across all factors."
        }
        strategy_instruction = strategy_instructions.get(target_strategy, strategy_instructions["GENERIC"])

        data_availability_section = self._format_data_availability(sentiment_data, whale_data, news_text, pattern_analysis)

        prompt = f"""
        🎯 **ENHANCED TRADING ANALYSIS WITH CHART PATTERNS**

        **ACTIVE STRATEGY: {target_strategy}**
        {strategy_instruction}

        **CRITICAL CHART PATTERN ANALYSIS:**
        {pattern_summary}

        **STRATEGIC TIMEFRAME:**
        - Max trade duration: 45 minutes (will be automatically enforced).
        - Optimal range: 8-25 minutes for ideal capital rotation.
        - Minimum duration: 5 minutes for active monitoring.

        {data_availability_section}

        **AVAILABLE DATA FOR {symbol}:**

        **1. 🎯 CANDIDACY REASON:**
        - This symbol was selected for: {reasons}

        **2. 📊 OVERVIEW:**
        - Symbol: {symbol}
        - Current Price: {current_price} USDT
        - Initial System Score: {final_score_display}
        - Enhanced System Score: {enhanced_score_display}
        - Recommended Internal Strategy: {recommended_strategy}
        - **Target Trading Strategy: {target_strategy}**

        **3. 🎪 STRATEGY ANALYSIS (INTERNAL SCORES):**
        {strategies_summary}

        **4. 📈 ADVANCED TECHNICAL INDICATORS:**
        {indicators_summary}

        **5. 🌍 COMPREHENSIVE MARKET CONTEXT:**
        - BTC Trend: {sentiment_data.get('btc_sentiment', 'N/A')}
        - Fear & Greed Index: {sentiment_data.get('fear_and_greed_index', 'N/A')} ({sentiment_data.get('sentiment_class', 'N/A')})
        - Market Regime: {sentiment_data.get('market_trend', 'N/A')}

        **6. 🐋 ADVANCED WHALE ANALYSIS (ENHANCED NETFLOW):**
        {whale_analysis_section}

        **7. 📰 RECENT NEWS (LAST 3 HOURS):**
        {news_text}

        **YOUR MISSION:**
        Integrate the chart pattern analysis above with all other available data to make a FINAL trading decision.

        **IF PATTERN ANALYSIS SHOWS STRONG SIGNALS:**
        - Give it significant weight in your decision
        - Use the pattern's entry/target/stop suggestions
        - Consider the pattern's confidence level

        **IF NO CLEAR PATTERNS:**
        - Rely more on technical indicators and market context
        - Be more conservative with targets and stops

        **REQUIRED OUTPUTS (JSON ONLY):**
        - `action`: Must be one of ("BUY", "SELL", "HOLD")
        - `reasoning`: Detailed explanation focusing on {target_strategy} AND SPECIFICALLY MENTIONING chart pattern analysis
        - `risk_assessment`: Risk analysis aligned with {target_strategy} and available data
        - `trade_type`: ("LONG" for BUY, "SHORT" for SELL)
        - `stop_loss`: Stop loss price (consider {target_strategy} risk profile AND pattern suggestions)
        - `take_profit`: Take profit price (realistic for {target_strategy} AND pattern targets)
        - `expected_target_minutes`: Realistic expectation (5-45 minutes)
        - `confidence_level`: Your confidence level (0.00-1.00) based on data quality AND pattern confidence
        - `strategy`: "{target_strategy}"  # ⚠️ MUST BE EXACTLY: {target_strategy}
        - `pattern_influence`: "Describe how chart pattern affected decision"

        **CRITICAL: You MUST include the 'strategy' field with the exact value: "{target_strategy}"**

        **SPECIAL INSTRUCTIONS FOR PATTERN INTEGRATION:**
        - If pattern_confidence > 0.7, you MUST reference it prominently in reasoning
        - If pattern suggests specific levels, strongly consider using them
        - Always explain how patterns influenced your final decision in 'pattern_influence'

        **Example output format (JSON only):**
        ```json
        {{
            "action": "BUY",
            "reasoning": "Strong bullish signals aligned with {target_strategy}. High-confidence Double Top pattern detected with 85% confidence suggesting upward movement. Whale activity is positive. Limited news data, but technicals and pattern are strong.",
            "risk_assessment": "Moderate risk suitable for {target_strategy}. Pattern provides clear stop and target levels. Note: Some data sources unavailable.",
            "trade_type": "LONG",
            "stop_loss": 0.0285,
            "take_profit": 0.0320,
            "expected_target_minutes": 12,
            "confidence_level": 0.82,
            "strategy": "{target_strategy}",
            "pattern_influence": "Double Top pattern provided clear entry and target levels, increasing confidence in the trade setup."
        }}
        ```
        """
        return prompt

    def _format_data_availability(self, sentiment_data, whale_data, news_text, pattern_analysis):
        general_whale_available = sentiment_data.get('general_whale_activity', {}).get('data_available', False)
        symbol_whale_available = whale_data.get('data_available', False)
        news_available = "No specific news found" not in news_text
        pattern_available = pattern_analysis is not None and pattern_analysis.get('pattern_detected') != 'no_clear_pattern'
        
        return f"""
**📊 REAL DATA AVAILABILITY STATUS:**
- Market Sentiment: {'✅ Available' if sentiment_data.get('fear_and_greed_index') else '❌ Not Available'}
- General Whale Activity: {'✅ Available' if general_whale_available else '❌ Not Available'}
- Symbol Whale Activity: {'✅ Available' if symbol_whale_available else '❌ Not Available'}
- News Data: {'✅ Available' if news_available else '❌ Not Available'}
- Chart Patterns: {'✅ STRONG PATTERN' if pattern_available and pattern_analysis.get('pattern_confidence', 0) > 0.7 else '✅ WEAK PATTERN' if pattern_available else '❌ Not Available'}

**⚠️ IMPORTANT: Decisions should be based ONLY on available real data.**
**🎯 PATTERN PRIORITY: Give significant weight to chart patterns when available with high confidence.**
"""

    def _format_advanced_indicators(self, advanced_indicators):
        if not advanced_indicators:
            return "❌ No data for advanced indicators."
        
        summary = []
        for timeframe, indicators in advanced_indicators.items():
            if indicators:
                parts = []
                if 'rsi' in indicators: parts.append(f"RSI: {indicators['rsi']:.2f}")
                if 'macd_hist' in indicators: parts.append(f"MACD Hist: {indicators['macd_hist']:.4f}")
                if 'volume_ratio' in indicators: parts.append(f"Volume: {indicators['volume_ratio']:.2f}x")
                if parts:
                    summary.append(f"\n📊 **{timeframe}:** {', '.join(parts)}")
        
        return "\n".join(summary) if summary else "⚠️ Insufficient indicator data."

    def _format_strategies_analysis(self, strategy_scores, recommended_strategy):
        if not strategy_scores:
            return "❌ No strategy data available."
        
        summary = [f"🎯 **Recommended Strategy:** {recommended_strategy}"]
        sorted_scores = sorted(strategy_scores.items(), key=lambda item: item[1], reverse=True)
        for strategy, score in sorted_scores:
            if isinstance(score, (int, float)):
                score_display = f"{score:.3f}"
            else:
                score_display = str(score)
            summary.append(f"   • {strategy}: {score_display}")
        
        return "\n".join(summary)

    def _format_pattern_analysis_enhanced(self, pattern_analysis, payload):
        """تنسيق محسن لقسم تحليل النمط"""
        if not pattern_analysis:
            return """
    ❌ **CHART PATTERN STATUS: NO CLEAR PATTERNS DETECTED**
    - Reason: Insufficient data or no recognizable patterns in current chart
    - Impact: Decision will rely more on technical indicators and market context
    - Recommendation: Proceed with caution, use wider stops
    """
        
        confidence = pattern_analysis.get('pattern_confidence', 0)
        pattern_name = pattern_analysis.get('pattern_detected', 'unknown')
        strength = pattern_analysis.get('pattern_strength', 'unknown')
        
        if confidence >= 0.7:
            status = "✅ **HIGH-CONFIDENCE PATTERN DETECTED**"
            influence = "This pattern should SIGNIFICANTLY influence your trading decision"
        elif confidence >= 0.5:
            status = "⚠️ **MEDIUM-CONFIDENCE PATTERN DETECTED**"
            influence = "Consider this pattern but verify with other indicators"
        else:
            status = "📊 **LOW-CONFIDENCE PATTERN DETECTED**"
            influence = "Use this pattern as supplementary information only"
        
        analysis_lines = [
            status,
            f"**Pattern:** {pattern_name}",
            f"**Confidence:** {confidence:.1%}",
            f"**Strength:** {strength}",
            f"**Predicted Move:** {pattern_analysis.get('predicted_direction', 'N/A')} "
            f"by {pattern_analysis.get('predicted_movement_percent', 0):.2f}%",
            f"**Timeframe:** {pattern_analysis.get('timeframe_expectation', 'N/A')}",
            f"**Influence:** {influence}",
            "",
            "**PATTERN-SPECIFIC SUGGESTIONS:**",
            f"Entry: {pattern_analysis.get('entry_suggestion', 'N/A')}",
            f"Target: {pattern_analysis.get('target_suggestion', 'N/A')}", 
            f"Stop: {pattern_analysis.get('stop_suggestion', 'N/A')}",
            f"Key Support: {pattern_analysis.get('key_support', 'N/A')}",
            f"Key Resistance: {pattern_analysis.get('key_resistance', 'N/A')}",
            "",
            f"**Analysis:** {pattern_analysis.get('pattern_analysis', 'No detailed analysis available')}"
        ]
        
        return "\n".join(analysis_lines)

    def _format_enhanced_whale_analysis_for_llm(self, general_whale_activity, symbol_whale_data, symbol):
        """🆕 تنسيق محسن لتحليل الحيتان مع بيانات صافي التدفق"""
        analysis_parts = []
        
        if general_whale_activity.get('data_available', False):
            # استخدام البيانات المحسنة من data_manager
            netflow_analysis = general_whale_activity.get('netflow_analysis', {})
            critical_flag = " 🚨 CRITICAL ALERT" if general_whale_activity.get('critical_alert') else ""
            
            if netflow_analysis:
                inflow = netflow_analysis.get('inflow_to_exchanges', 0)
                outflow = netflow_analysis.get('outflow_from_exchanges', 0)
                net_flow = netflow_analysis.get('net_flow', 0)
                flow_direction = netflow_analysis.get('flow_direction', 'BALANCED')
                market_impact = netflow_analysis.get('market_impact', 'UNKNOWN')
                
                analysis_parts.append(f"📊 **General Market Netflow Analysis:**")
                analysis_parts.append(f"   • Inflow to Exchanges: ${inflow:,.0f}")
                analysis_parts.append(f"   • Outflow from Exchanges: ${outflow:,.0f}")
                analysis_parts.append(f"   • Net Flow: ${net_flow:,.0f} ({flow_direction})")
                analysis_parts.append(f"   • Market Impact: {market_impact}{critical_flag}")
                
                # إضافة إشارات التداول من تحليل صافي التدفق
                trading_signals = general_whale_activity.get('trading_signals', [])
                if trading_signals:
                    analysis_parts.append(f"   • Trading Signals: {len(trading_signals)} active signals")
                    for signal in trading_signals[:3]:  # عرض أول 3 إشارات فقط
                        analysis_parts.append(f"     ◦ {signal.get('action')}: {signal.get('reason')} (Confidence: {signal.get('confidence', 0):.2f})")
            else:
                analysis_parts.append(f"📊 **General Market:** {general_whale_activity.get('description', 'Activity detected')}{critical_flag}")
        else:
            analysis_parts.append("📊 **General Market:** No significant general whale data available")
        
        if symbol_whale_data.get('data_available', False):
            activity_level = symbol_whale_data.get('activity_level', 'UNKNOWN')
            large_transfers = symbol_whale_data.get('large_transfers_count', 0)
            total_volume = symbol_whale_data.get('total_volume', 0)
            
            analysis_parts.append(f"🎯 **{symbol} Specific Whale Activity:**")
            analysis_parts.append(f"   • Activity Level: {activity_level}")
            analysis_parts.append(f"   • Large Transfers: {large_transfers}")
            analysis_parts.append(f"   • Total Volume: ${total_volume:,.0f}")
            
            recent_transfers = symbol_whale_data.get('recent_large_transfers', [])
            if recent_transfers:
                analysis_parts.append(f"   • Recent Large Transfers: {len(recent_transfers)}")
        else:
            analysis_parts.append(f"🎯 **{symbol} Specific:** No contract-based whale data available")
        
        return "\n".join(analysis_parts)

    def _format_whale_analysis_for_llm(self, general_whale_activity, symbol_whale_data, symbol):
        """النسخة القديمة للحفاظ على التوافق - استخدام النسخة المحسنة بدلاً منها"""
        return self._format_enhanced_whale_analysis_for_llm(general_whale_activity, symbol_whale_data, symbol)

    async def re_analyze_trade_async(self, trade_data: dict, processed_data: dict):
        try:
            symbol = trade_data['symbol']
            original_strategy = trade_data.get('strategy', 'GENERIC')
            
            if not original_strategy or original_strategy == 'unknown':
                original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
                print(f"🔧 Fixed missing original strategy for {symbol}: {original_strategy}")
                
            print(f"🧠 Starting LLM re-analysis for {symbol} with strategy: {original_strategy}...")
            
            news_text = await self.news_fetcher.get_news_for_symbol(symbol)
            pattern_analysis = await self._get_pattern_analysis(processed_data)
            prompt = self._create_enhanced_re_analysis_prompt(trade_data, processed_data, news_text, pattern_analysis)
            
            async with self.semaphore:
                response = await self._call_llm(prompt)
            
            re_analysis_dict = self._parse_re_analysis_response_enhanced(response, original_strategy, symbol)
            if re_analysis_dict:
                re_analysis_dict['model_source'] = self.model_name
                
                final_strategy = re_analysis_dict.get('strategy')
                if not final_strategy or final_strategy == 'unknown':
                    re_analysis_dict['strategy'] = original_strategy
                    print(f"🔧 Final re-analysis strategy correction for {symbol}: {original_strategy}")
                else:
                    print(f"✅ LLM re-analysis confirmed strategy '{final_strategy}' for {symbol}.")
                    
                print(f"✅ LLM re-analysis completed for {symbol} - Strategy: {re_analysis_dict['strategy']}")
            else:
                print(f"❌ LLM re-analysis failed for {symbol}")
                return local_re_analyze_trade(trade_data, processed_data)
            
            return re_analysis_dict
            
        except Exception as e:
            print(f"❌ Unexpected error in enhanced LLM re-analysis: {e}")
            return local_re_analyze_trade(trade_data, processed_data)

    def _parse_re_analysis_response_enhanced(self, response_text: str, fallback_strategy: str = 'GENERIC', symbol: str = 'unknown') -> dict:
        """✅ الإصلاح النهائي: تحليل رد إعادة التحليل مع إعطاء الثقة لقراره"""
        try:
            json_match = re.search(r'```json\n(.*?)\n```', response_text, re.DOTALL)
            if json_match:
                json_str = json_match.group(1).strip()
            else:
                json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
                if json_match:
                    json_str = json_match.group()
                else:
                    print(f"❌ No JSON found in re-analysis response for {symbol}: {response_text}")
                    return None

            decision_data = json.loads(json_str)

            strategy_value = decision_data.get('strategy')
            # 💡 التحقق: هل الاستراتيجية التي أرجعها النموذج صالحة؟
            if not strategy_value or strategy_value == 'unknown' or strategy_value is None:
                # إذا كانت غير صالحة، استخدم الاستراتيجية الأصلية كخطة بديلة آمنة
                print(f"⚠️ LLM re-analysis returned invalid strategy '{strategy_value}' for {symbol}. Forcing fallback: {fallback_strategy}")
                decision_data['strategy'] = fallback_strategy
            else:
                # إذا كانت صالحة، اعتمدها مباشرةً!
                print(f"✅ LLM re-analysis confirmed strategy '{strategy_value}' for {symbol}.")

            return decision_data

        except Exception as e:
            print(f"❌ Unexpected error parsing re-analysis response for {symbol}: {e}")
            return None

    def _create_enhanced_re_analysis_prompt(self, trade_data: dict, processed_data: dict, news_text: str, pattern_analysis: dict) -> str:
        symbol = trade_data.get('symbol', 'N/A')
        entry_price = trade_data.get('entry_price', 'N/A')
        current_price = processed_data.get('current_price', 'N/A')
        strategy = trade_data.get('strategy', 'GENERIC')
        
        if not strategy or strategy == 'unknown':
            strategy = 'GENERIC'
            
        try:
            price_change = ((current_price - entry_price) / entry_price) * 100
            performance_status = "Profit" if price_change > 0 else "Loss"
            price_change_display = f"{price_change:+.2f}%"
        except (TypeError, ZeroDivisionError):
            price_change_display = "N/A"
            performance_status = "Unknown"
            
        indicators_summary = self._format_advanced_indicators(processed_data.get('advanced_indicators', {}))
        pattern_summary = self._format_pattern_analysis_enhanced(pattern_analysis, processed_data)
        
        # 🆕 استخدام البيانات المحسنة من data_manager
        whale_analysis_section = self._format_enhanced_whale_analysis_for_llm(
            processed_data.get('sentiment_data', {}).get('general_whale_activity', {}), 
            processed_data.get('whale_data', {}), 
            symbol
        )

        prompt = f"""
        🔄 **ENHANCED TRADE RE-ANALYSIS WITH CHART PATTERNS**

        You are re-analyzing an open trade with new market data and chart patterns.

        **TRADE CONTEXT ({strategy} STRATEGY):**
        - Original Strategy: {strategy}
        - Symbol: {symbol}
        - Entry Price: {entry_price} USDT
        - Current Price: {current_price} USDT
        - Current Performance: {price_change_display} ({performance_status})
        - Original Strategy: {strategy}

        **UPDATED CHART PATTERN ANALYSIS:**
        {pattern_summary}

        **NEW MARKET DATA:**
        - Updated Technicals: {indicators_summary}
        - Updated Whale Intel: {whale_analysis_section}
        - Latest News: {news_text}

        **DECISION STRATEGY FOR {strategy}:**
        - If pattern shows MORE profit potential: UPDATE with new targets and time
        - If pattern suggests WEAKNESS: CLOSE immediately
        - If pattern still VALID but needs more time: UPDATE with extended timing
        - If pattern INVALIDATED: CLOSE to protect capital

        **PATTERN-BASED DECISION GUIDELINES:**
        - High-confidence patterns (>70%): Give them primary decision weight
        - Medium-confidence patterns (50-70%): Use as supporting evidence
        - Low-confidence patterns (<50%): Use cautiously with other factors

        **REQUIRED OUTPUTS (JSON ONLY):**
        - `action`: Must be ("HOLD", "CLOSE_TRADE", "UPDATE_TRADE")
        - `reasoning`: Justification based on new data AND pattern analysis
        - `new_stop_loss`: New stop loss if updating (consider pattern levels)
        - `new_take_profit`: New take profit if updating (consider pattern targets)
        - `new_expected_minutes`: New expected time if updating (null otherwise)
        - `confidence_level`: Confidence in this decision (0.00-1.00)
        - `strategy`: "{strategy}"  # ⚠️ MUST BE EXACTLY: {strategy}
        - `pattern_influence_reanalysis`: "Describe how updated pattern analysis affected decision"

        **CRITICAL: You MUST include the 'strategy' field with the exact value: "{strategy}"**
        """
        return prompt

    @_rate_limit_nvidia_api
    async def _call_llm(self, prompt: str) -> str:
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=[{"role": "user", "content": prompt}],
                temperature=self.temperature,
                seed=42
            )
            return response.choices[0].message.content
        except (RateLimitError, APITimeoutError) as e:
            print(f"❌ LLM API Error: {e}. Retrying...")
            raise
        except Exception as e:
            print(f"❌ Unexpected LLM API error: {e}")
            raise

# نظام تتبع أداء الأنماط
class PatternPerformanceTracker:
    def __init__(self):
        self.pattern_success_rates = {}
        self.pattern_history = []
    
    async def track_pattern_performance(self, trade_data, pattern_analysis, outcome, profit_percent):
        """تتبع أداء الأنماط المختلفة"""
        pattern_name = pattern_analysis.get('pattern_detected', 'unknown')
        confidence = pattern_analysis.get('pattern_confidence', 0)
        
        if pattern_name not in self.pattern_success_rates:
            self.pattern_success_rates[pattern_name] = {
                'success_count': 0,
                'total_count': 0,
                'total_profit': 0,
                'avg_profit': 0,
                'confidence_sum': 0,
                'avg_confidence': 0
            }
        
        stats = self.pattern_success_rates[pattern_name]
        stats['total_count'] += 1
        stats['confidence_sum'] += confidence
        
        success = outcome in ["SUCCESS", "CLOSED_BY_REANALYSIS", "CLOSED_BY_MONITOR"] and profit_percent > 0
        if success:
            stats['success_count'] += 1
            stats['total_profit'] += profit_percent
            stats['avg_profit'] = stats['total_profit'] / stats['success_count']
        
        stats['avg_confidence'] = stats['confidence_sum'] / stats['total_count']
        
        success_rate = stats['success_count'] / stats['total_count']
        
        # تسجيل التاريخ
        self.pattern_history.append({
            'timestamp': datetime.now().isoformat(),
            'pattern': pattern_name,
            'confidence': confidence,
            'success': success,
            'profit_percent': profit_percent,
            'symbol': trade_data.get('symbol', 'unknown')
        })
        
        print(f"📊 Pattern {pattern_name}: Success Rate {success_rate:.1%}, Avg Profit: {stats['avg_profit']:.2f}%, Avg Confidence: {stats['avg_confidence']:.1%}")
        
        return success_rate

    def get_pattern_recommendations(self):
        """الحصول على توصيات بناءً على أداء الأنماط"""
        recommendations = []
        
        for pattern, stats in self.pattern_success_rates.items():
            if stats['total_count'] >= 3:  # على الأقل 3 صفقات لتكوين توصية
                success_rate = stats['success_count'] / stats['total_count']
                
                if success_rate > 0.7:
                    recommendations.append(f"✅ **{pattern}**: Excellent performance ({success_rate:.1%} success) - Prioritize this pattern")
                elif success_rate > 0.5:
                    recommendations.append(f"⚠️ **{pattern}**: Good performance ({success_rate:.1%} success) - Use with confidence")
                elif success_rate < 0.3:
                    recommendations.append(f"❌ **{pattern}**: Poor performance ({success_rate:.1%} success) - Use cautiously")
        
        return recommendations

# إنشاء نسخة عالمية من متتبع الأداء
pattern_tracker_global = PatternPerformanceTracker()

def local_analyze_opportunity(candidate_data):
    """تحليل محسن مع مراعاة مخاطر RSI"""
    score = candidate_data.get('enhanced_final_score', candidate_data.get('final_score', 0))
    quality_warnings = candidate_data.get('quality_warnings', [])
    
    strategy = candidate_data.get('target_strategy', 'GENERIC')
    
    rsi_critical = any('🚨 RSI CRITICAL' in warning for warning in quality_warnings)
    rsi_warning = any('⚠️ RSI WARNING' in warning for warning in quality_warnings)
    
    if rsi_critical:
        return {
            "action": "HOLD", 
            "reasoning": "Local analysis: CRITICAL RSI levels detected - extreme overbought condition. High risk of correction.",
            "trade_type": "NONE", 
            "stop_loss": None, 
            "take_profit": None, 
            "expected_target_minutes": 15,
            "confidence_level": 0.1, 
            "model_source": "local_safety_filter",
            "strategy": strategy
        }
    
    advanced_indicators = candidate_data.get('advanced_indicators', {})
    strategy_scores = candidate_data.get('strategy_scores', {})
    
    if not advanced_indicators:
        return {
            "action": "HOLD", 
            "reasoning": "Local analysis: Insufficient advanced indicator data.",
            "trade_type": "NONE", 
            "stop_loss": None, 
            "take_profit": None, 
            "expected_target_minutes": 15,
            "confidence_level": 0.3, 
            "model_source": "local",
            "strategy": strategy
        }
    
    action = "HOLD"
    reasoning = "Local analysis: No strong buy signal based on enhanced rules."
    trade_type = "NONE"
    stop_loss = None
    take_profit = None
    expected_minutes = 15
    confidence = 0.3
    
    five_minute_indicators = advanced_indicators.get('5m', {})
    one_hour_indicators = advanced_indicators.get('1h', {})
    
    buy_conditions = 0
    total_conditions = 0
    
    if isinstance(score, (int, float)) and score > 0.70: 
        buy_conditions += 1
    total_conditions += 1
    
    rsi_five_minute = five_minute_indicators.get('rsi', 50)
    if 30 <= rsi_five_minute <= 65:
        buy_conditions += 1
    total_conditions += 1
    
    if five_minute_indicators.get('macd_hist', 0) > 0: 
        buy_conditions += 1
    total_conditions += 1
    
    if (five_minute_indicators.get('ema_9', 0) > five_minute_indicators.get('ema_21', 0) and
        one_hour_indicators.get('ema_9', 0) > one_hour_indicators.get('ema_21', 0)): 
        buy_conditions += 1
    total_conditions += 1
    
    if five_minute_indicators.get('volume_ratio', 0) > 1.5: 
        buy_conditions += 1
    total_conditions += 1
    
    confidence = buy_conditions / total_conditions if total_conditions > 0 else 0.3
    
    if rsi_warning:
        confidence *= 0.7
        reasoning += " RSI warning applied."
    
    if confidence >= 0.6:
        action = "BUY"
        current_price = candidate_data['current_price']
        trade_type = "LONG"
        
        if rsi_warning:
            stop_loss = current_price * 0.93
        else:
            stop_loss = current_price * 0.95
        
        if 'bb_upper' in five_minute_indicators:
            take_profit = five_minute_indicators['bb_upper'] * 1.02
        else:
            take_profit = current_price * 1.05
        
        if confidence >= 0.8: 
            expected_minutes = 10
        elif confidence >= 0.6: 
            expected_minutes = 18
        else: 
            expected_minutes = 25
        
        reasoning = f"Local enhanced analysis: Strong buy signal with {buy_conditions}/{total_conditions} conditions met. Strategy: {strategy}. Confidence: {confidence:.2f}"
        if rsi_warning:
            reasoning += " (RSI warning - trading with caution)"
    
    return {
        "action": action,
        "reasoning": reasoning,
        "trade_type": trade_type,
        "stop_loss": stop_loss,
        "take_profit": take_profit,
        "expected_target_minutes": expected_minutes,
        "confidence_level": confidence,
        "model_source": "local",
        "strategy": strategy
    }

def local_re_analyze_trade(trade_data, processed_data):
    current_price = processed_data['current_price']
    stop_loss = trade_data['stop_loss']
    take_profit = trade_data['take_profit']
    action = "HOLD"
    reasoning = "Local re-analysis: No significant change to trigger an update or close."
    if stop_loss and current_price <= stop_loss: 
        action = "CLOSE_TRADE"
        reasoning = "Local re-analysis: Stop loss has been hit."
    elif take_profit and current_price >= take_profit: 
        action = "CLOSE_TRADE"
        reasoning = "Local re-analysis: Take profit has been hit."
    
    strategy = trade_data.get('strategy', 'GENERIC')
    if strategy == 'unknown':
        strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
    
    return {
        "action": action,
        "reasoning": reasoning,
        "new_stop_loss": None,
        "new_take_profit": None,
        "new_expected_minutes": None,
        "model_source": "local",
        "strategy": strategy
    }

print("✅ ENHANCED LLM Service loaded successfully - ADVANCED PATTERN ANALYSIS - Performance Tracking - Real-time Pattern Integration - Enhanced Whale Analysis")