Spaces:
Running
Running
File size: 75,500 Bytes
53cf6c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 |
# ML.py - الإصدار المحدث مع إصلاح الأخطاء الحرجة
import pandas as pd
import pandas_ta as ta
import numpy as np
from datetime import datetime
import asyncio
from data_manager import DataManager
class AdvancedTechnicalAnalyzer:
def __init__(self):
self.indicators_config = {
'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'],
'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'],
'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'],
'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'],
'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
}
def calculate_all_indicators(self, dataframe, timeframe):
if dataframe.empty:
return {}
indicators = {}
indicators.update(self._calculate_trend_indicators(dataframe))
indicators.update(self._calculate_momentum_indicators(dataframe))
indicators.update(self._calculate_volatility_indicators(dataframe))
indicators.update(self._calculate_volume_indicators(dataframe))
indicators.update(self._calculate_cycle_indicators(dataframe))
return indicators
def _calculate_trend_indicators(self, dataframe):
trend = {}
trend['ema_9'] = float(ta.ema(dataframe['close'], length=9).iloc[-1]) if len(dataframe) >= 9 else None
trend['ema_21'] = float(ta.ema(dataframe['close'], length=21).iloc[-1]) if len(dataframe) >= 21 else None
trend['ema_50'] = float(ta.ema(dataframe['close'], length=50).iloc[-1]) if len(dataframe) >= 50 else None
trend['ema_200'] = float(ta.ema(dataframe['close'], length=200).iloc[-1]) if len(dataframe) >= 200 else None
if len(dataframe) >= 26:
ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close'])
if ichimoku is not None:
trend['ichimoku_conversion'] = float(ichimoku[0]['ITS_9'].iloc[-1]) if not ichimoku[0]['ITS_9'].empty else None
trend['ichimoku_base'] = float(ichimoku[0]['IKS_26'].iloc[-1]) if not ichimoku[0]['IKS_26'].empty else None
trend['ichimoku_span_a'] = float(ichimoku[0]['ISA_9'].iloc[-1]) if not ichimoku[0]['ISA_9'].empty else None
trend['ichimoku_span_b'] = float(ichimoku[0]['ISB_26'].iloc[-1]) if not ichimoku[0]['ISB_26'].empty else None
if len(dataframe) >= 14:
adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
if adx_result is not None:
trend['adx'] = float(adx_result['ADX_14'].iloc[-1]) if not adx_result['ADX_14'].empty else None
trend['dmi_plus'] = float(adx_result['DMP_14'].iloc[-1]) if not adx_result['DMP_14'].empty else None
trend['dmi_minus'] = float(adx_result['DMN_14'].iloc[-1]) if not adx_result['DMN_14'].empty else None
if len(dataframe) >= 5:
psar = ta.psar(dataframe['high'], dataframe['low'], dataframe['close'])
if psar is not None:
trend['psar'] = float(psar['PSARl_0.02_0.2'].iloc[-1]) if not psar['PSARl_0.02_0.2'].empty else None
return {key: value for key, value in trend.items() if value is not None}
def _calculate_momentum_indicators(self, dataframe):
momentum = {}
if len(dataframe) >= 14:
rsi = ta.rsi(dataframe['close'], length=14)
momentum['rsi'] = float(rsi.iloc[-1]) if not rsi.empty else None
if len(dataframe) >= 14:
stoch_rsi = ta.stochrsi(dataframe['close'], length=14)
if stoch_rsi is not None:
momentum['stoch_rsi_k'] = float(stoch_rsi['STOCHRSIk_14_14_3_3'].iloc[-1]) if not stoch_rsi['STOCHRSIk_14_14_3_3'].empty else None
momentum['stoch_rsi_d'] = float(stoch_rsi['STOCHRSId_14_14_3_3'].iloc[-1]) if not stoch_rsi['STOCHRSId_14_14_3_3'].empty else None
if len(dataframe) >= 26:
macd = ta.macd(dataframe['close'])
if macd is not None:
momentum['macd_line'] = float(macd['MACD_12_26_9'].iloc[-1]) if not macd['MACD_12_26_9'].empty else None
momentum['macd_signal'] = float(macd['MACDs_12_26_9'].iloc[-1]) if not macd['MACDs_12_26_9'].empty else None
momentum['macd_hist'] = float(macd['MACDh_12_26_9'].iloc[-1]) if not macd['MACDh_12_26_9'].empty else None
if len(dataframe) >= 14:
williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
momentum['williams_r'] = float(williams.iloc[-1]) if not williams.empty else None
if len(dataframe) >= 20:
cci = ta.cci(dataframe['high'], dataframe['low'], dataframe['close'], length=20)
momentum['cci'] = float(cci.iloc[-1]) if not cci.empty else None
if len(dataframe) >= 34:
awesome_oscillator = ta.ao(dataframe['high'], dataframe['low'])
momentum['awesome_oscillator'] = float(awesome_oscillator.iloc[-1]) if not awesome_oscillator.empty else None
if len(dataframe) >= 10:
momentum_indicator = ta.mom(dataframe['close'], length=10)
momentum['momentum'] = float(momentum_indicator.iloc[-1]) if not momentum_indicator.empty else None
return {key: value for key, value in momentum.items() if value is not None}
def _calculate_volatility_indicators(self, dataframe):
volatility = {}
if len(dataframe) >= 20:
bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
if bollinger_bands is not None:
volatility['bb_upper'] = float(bollinger_bands['BBU_20_2.0'].iloc[-1]) if not bollinger_bands['BBU_20_2.0'].empty else None
volatility['bb_middle'] = float(bollinger_bands['BBM_20_2.0'].iloc[-1]) if not bollinger_bands['BBM_20_2.0'].empty else None
volatility['bb_lower'] = float(bollinger_bands['BBL_20_2.0'].iloc[-1]) if not bollinger_bands['BBL_20_2.0'].empty else None
if all(key in volatility for key in ['bb_upper', 'bb_lower', 'bb_middle']):
volatility['bb_width'] = (volatility['bb_upper'] - volatility['bb_lower']) / volatility['bb_middle']
if len(dataframe) >= 14:
average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
volatility['atr'] = float(average_true_range.iloc[-1]) if not average_true_range.empty else None
if volatility['atr']:
volatility['atr_percent'] = volatility['atr'] / dataframe['close'].iloc[-1]
if len(dataframe) >= 20:
keltner_channel = ta.kc(dataframe['high'], dataframe['low'], dataframe['close'], length=20)
if keltner_channel is not None:
volatility['kc_upper'] = float(keltner_channel['KCUe_20_2'].iloc[-1]) if not keltner_channel['KCUe_20_2'].empty else None
volatility['kc_lower'] = float(keltner_channel['KCLe_20_2'].iloc[-1]) if not keltner_channel['KCLe_20_2'].empty else None
if len(dataframe) >= 20:
donchian_channel = ta.donchian(dataframe['high'], dataframe['low'], length=20)
if donchian_channel is not None:
volatility['dc_upper'] = float(donchian_channel['DCU_20_20'].iloc[-1]) if not donchian_channel['DCU_20_20'].empty else None
volatility['dc_lower'] = float(donchian_channel['DCL_20_20'].iloc[-1]) if not donchian_channel['DCL_20_20'].empty else None
if len(dataframe) >= 14:
relative_volatility_index = ta.rvi(dataframe['close'], length=14)
volatility['rvi'] = float(relative_volatility_index.iloc[-1]) if not relative_volatility_index.empty else None
return {key: value for key, value in volatility.items() if value is not None}
def _calculate_volume_indicators(self, dataframe):
volume = {}
if len(dataframe) >= 1:
volume_weighted_average_price = ta.vwap(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'])
volume['vwap'] = float(volume_weighted_average_price.iloc[-1]) if not volume_weighted_average_price.empty else None
on_balance_volume = ta.obv(dataframe['close'], dataframe['volume'])
volume['obv'] = float(on_balance_volume.iloc[-1]) if not on_balance_volume.empty else None
if len(dataframe) >= 14:
money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14)
volume['mfi'] = float(money_flow_index.iloc[-1]) if not money_flow_index.empty else None
accumulation_distribution = ta.ad(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'])
volume['ad_line'] = float(accumulation_distribution.iloc[-1]) if not accumulation_distribution.empty else None
if len(dataframe) >= 20:
volume_oscillator = ta.pvo(dataframe['volume'])
if volume_oscillator is not None:
volume['volume_oscillator'] = float(volume_oscillator['PVO_12_26_9'].iloc[-1]) if not volume_oscillator['PVO_12_26_9'].empty else None
volume['volume_avg_20'] = float(dataframe['volume'].tail(20).mean()) if len(dataframe) >= 20 else None
if volume['volume_avg_20'] and volume['volume_avg_20'] > 0:
volume['volume_ratio'] = float(dataframe['volume'].iloc[-1] / volume['volume_avg_20'])
return {key: value for key, value in volume.items() if value is not None}
def _calculate_cycle_indicators(self, dataframe):
cycle = {}
if len(dataframe) >= 9:
hull_moving_average = ta.hma(dataframe['close'], length=9)
cycle['hull_ma'] = float(hull_moving_average.iloc[-1]) if not hull_moving_average.empty else None
if len(dataframe) >= 10:
supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3)
if supertrend is not None:
cycle['supertrend'] = float(supertrend['SUPERT_10_3.0'].iloc[-1]) if not supertrend['SUPERT_10_3.0'].empty else None
cycle['supertrend_direction'] = float(supertrend['SUPERTd_10_3.0'].iloc[-1]) if not supertrend['SUPERTd_10_3.0'].empty else None
if len(dataframe) >= 10:
fisher_transform = ta.fisher(dataframe['high'], dataframe['low'], length=10)
if fisher_transform is not None:
cycle['fisher_transform'] = float(fisher_transform['FISHERT_10_1'].iloc[-1]) if not fisher_transform['FISHERT_10_1'].empty else None
return {key: value for key, value in cycle.items() if value is not None}
class PatternEnhancedStrategyEngine:
"""محرك استراتيجيات محسن مع دعم متقدم للأنماط البيانية"""
def __init__(self, data_manager, learning_engine):
self.data_manager = data_manager
self.learning_engine = learning_engine
self.pattern_success_tracker = PatternPerformanceTracker()
async def enhance_strategy_with_patterns(self, strategy_scores, pattern_analysis, symbol):
"""تعزيز درجات الاستراتيجية بناءً على تحليل الأنماط"""
if not pattern_analysis or pattern_analysis.get('pattern_detected') in ['no_clear_pattern', 'insufficient_data']:
return strategy_scores
pattern_confidence = pattern_analysis.get('pattern_confidence', 0)
pattern_name = pattern_analysis.get('pattern_detected', '')
predicted_direction = pattern_analysis.get('predicted_direction', '')
# فقط تعزيز إذا كانت الثقة في النمط عالية
if pattern_confidence >= 0.7:
enhancement_factor = self._calculate_pattern_enhancement(pattern_confidence, pattern_name)
# تحديد الاستراتيجيات المناسبة للنمط
enhanced_strategies = self._get_pattern_appropriate_strategies(pattern_name, predicted_direction)
for strategy in enhanced_strategies:
if strategy in strategy_scores:
strategy_scores[strategy] *= enhancement_factor
print(f"🎯 Enhanced {strategy} for {symbol} by {enhancement_factor:.1%} due to {pattern_name} pattern")
return strategy_scores
def _calculate_pattern_enhancement(self, pattern_confidence, pattern_name):
"""حساب عامل التعزيز بناءً على ثقة النمط ونوعه"""
base_enhancement = 1.0 + (pattern_confidence * 0.5) # حتى 50% زيادة
# أنماط عالية المصداقية تحصل على تعزيز إضافي
high_reliability_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Cup and Handle']
if pattern_name in high_reliability_patterns:
base_enhancement *= 1.2
return min(base_enhancement, 2.0) # حد أقصى 100% زيادة
def _get_pattern_appropriate_strategies(self, pattern_name, direction):
"""الحصول على الاستراتيجيات المناسبة لنوع النمط"""
reversal_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Triple Top', 'Triple Bottom']
continuation_patterns = ['Flags', 'Pennants', 'Triangles', 'Rectangles']
if pattern_name in reversal_patterns:
if direction == 'down':
return ['breakout_momentum', 'trend_following']
else:
return ['mean_reversion', 'breakout_momentum']
elif pattern_name in continuation_patterns:
return ['trend_following', 'breakout_momentum']
else: # أنماط أخرى
return ['breakout_momentum', 'hybrid_ai']
class PatternPerformanceTracker:
"""متتبع أداء الأنماط البيانية"""
def __init__(self):
self.pattern_performance = {}
self.pattern_success_rates = {}
async def track_pattern_outcome(self, symbol, pattern_analysis, success, profit_percent):
"""تتبع نتيجة النمط البياني"""
if not pattern_analysis:
return
pattern_name = pattern_analysis.get('pattern_detected')
confidence = pattern_analysis.get('pattern_confidence', 0)
if pattern_name not in ['no_clear_pattern', 'insufficient_data']:
if pattern_name not in self.pattern_performance:
self.pattern_performance[pattern_name] = {
'total_trades': 0,
'successful_trades': 0,
'total_profit': 0,
'total_confidence': 0
}
stats = self.pattern_performance[pattern_name]
stats['total_trades'] += 1
stats['total_confidence'] += confidence
if success:
stats['successful_trades'] += 1
stats['total_profit'] += profit_percent
success_rate = stats['successful_trades'] / stats['total_trades']
avg_profit = stats['total_profit'] / stats['successful_trades'] if stats['successful_trades'] > 0 else 0
avg_confidence = stats['total_confidence'] / stats['total_trades']
print(f"📊 Pattern Performance: {pattern_name} - "
f"Success: {success_rate:.1%} - Avg Profit: {avg_profit:.2f}% - "
f"Avg Confidence: {avg_confidence:.1%}")
def get_pattern_reliability(self, pattern_name):
"""الحصول على موثوقية النمط"""
if pattern_name in self.pattern_performance:
stats = self.pattern_performance[pattern_name]
if stats['total_trades'] > 0:
return stats['successful_trades'] / stats['total_trades']
return 0.5 # قيمة افتراضية
class MultiStrategyEngine:
def __init__(self, data_manager, learning_engine):
self.data_manager = data_manager
self.learning_engine = learning_engine
self.pattern_enhancer = PatternEnhancedStrategyEngine(data_manager, learning_engine)
self.strategies = {
'trend_following': self._trend_following_strategy,
'mean_reversion': self._mean_reversion_strategy,
'breakout_momentum': self._breakout_momentum_strategy,
'volume_spike': self._volume_spike_strategy,
'whale_tracking': self._whale_tracking_strategy,
'pattern_recognition': self._pattern_recognition_strategy,
'hybrid_ai': self._hybrid_ai_strategy
}
async def evaluate_all_strategies(self, symbol_data, market_context):
"""تقييم جميع الاستراتيجيات مع استخدام أوزان نظام التعلم - الإصدار المحسّن"""
try:
# ✅ الحصول على الأوزان المحسنة من نظام التعلم
market_condition = market_context.get('market_trend', 'sideways_market')
# ✅ التحقق من وجود learning_engine وتهيئته
if self.learning_engine and hasattr(self.learning_engine, 'initialized') and self.learning_engine.initialized:
try:
optimized_weights = await self.learning_engine.get_optimized_strategy_weights(market_condition)
print(f"🎯 الأوزان المستخدمة: {optimized_weights}")
except Exception as e:
print(f"⚠️ فشل الحصول على الأوزان المحسنة: {e}")
optimized_weights = await self.get_default_weights()
else:
print("⚠️ نظام التعلم غير متوفر، استخدام الأوزان الافتراضية")
optimized_weights = await self.get_default_weights()
strategy_scores = {}
base_scores = {} # ✅ تخزين الدرجات الأساسية
# ✅ تقييم كل استراتيجية مع تطبيق الأوزان
for strategy_name, strategy_function in self.strategies.items():
try:
base_score = await strategy_function(symbol_data, market_context)
base_scores[strategy_name] = base_score # ✅ حفظ الدرجة الأساسية
# ✅ تطبيق الوزن المحسن
weight = optimized_weights.get(strategy_name, 0.1)
weighted_score = base_score * weight
strategy_scores[strategy_name] = min(weighted_score, 1.0)
print(f"📊 {strategy_name}: {base_score:.3f} × {weight:.3f} = {weighted_score:.3f}")
except Exception as error:
print(f"⚠️ Strategy {strategy_name} failed: {error}")
base_score = await self._fallback_strategy_score(strategy_name, symbol_data, market_context)
base_scores[strategy_name] = base_score
strategy_scores[strategy_name] = base_score * optimized_weights.get(strategy_name, 0.1)
# ✅ تعزيز الاستراتيجيات بناءً على تحليل الأنماط
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis:
strategy_scores = await self.pattern_enhancer.enhance_strategy_with_patterns(
strategy_scores, pattern_analysis, symbol_data.get('symbol')
)
# ✅ تحديد أفضل استراتيجية بناءً على الدرجات الأساسية (بدون أوزان)
if base_scores:
best_strategy = max(base_scores.items(), key=lambda x: x[1])
best_strategy_name = best_strategy[0]
best_strategy_score = best_strategy[1]
symbol_data['recommended_strategy'] = best_strategy_name
symbol_data['strategy_confidence'] = best_strategy_score
print(f"🏆 أفضل استراتيجية (أساسي): {best_strategy_name} بدرجة {best_strategy_score:.3f}")
# ✅ تعزيز اختيار الاستراتيجية إذا كان هناك نمط عالي الثقة
if (pattern_analysis and
pattern_analysis.get('pattern_confidence', 0) > 0.7 and
self._is_strategy_pattern_aligned(best_strategy_name, pattern_analysis)):
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.3
enhanced_confidence = min(best_strategy_score + pattern_bonus, 1.0)
symbol_data['strategy_confidence'] = enhanced_confidence
print(f"🎯 تعزيز ثقة الاستراتيجية بواسطة النمط: {enhanced_confidence:.3f}")
return strategy_scores, base_scores # ✅ إرجاع كلا النوعين
except Exception as error:
print(f"❌ فشل تقييم الاستراتيجيات: {error}")
fallback_scores = await self.get_fallback_scores()
return fallback_scores, fallback_scores
def _is_strategy_pattern_aligned(self, strategy_name, pattern_analysis):
"""التحقق من محاذاة الاستراتيجية مع النمط البياني"""
pattern_direction = pattern_analysis.get('predicted_direction', '')
pattern_type = pattern_analysis.get('pattern_detected', '')
# استراتيجيات التوجه الصعودي
bullish_strategies = ['trend_following', 'breakout_momentum']
# استراتيجيات التوجه الهبوطي
bearish_strategies = ['mean_reversion', 'breakout_momentum']
if pattern_direction == 'up' and strategy_name in bullish_strategies:
return True
elif pattern_direction == 'down' and strategy_name in bearish_strategies:
return True
return False
async def get_default_weights(self):
"""الأوزان الافتراضية عندما لا يتوفر نظام التعلم"""
return {
'trend_following': 0.15, 'mean_reversion': 0.12,
'breakout_momentum': 0.18, 'volume_spike': 0.10,
'whale_tracking': 0.20, 'pattern_recognition': 0.15,
'hybrid_ai': 0.10
}
async def get_fallback_scores(self):
"""درجات احتياطية عند فشل التقييم"""
return {
'trend_following': 0.5, 'mean_reversion': 0.5,
'breakout_momentum': 0.5, 'volume_spike': 0.5,
'whale_tracking': 0.5, 'pattern_recognition': 0.5,
'hybrid_ai': 0.5
}
async def _trend_following_strategy(self, symbol_data, market_context):
"""استراتيجية تتبع الاتجاه المحسنة - درجات أعلى"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
timeframes = ['4h', '1h', '15m']
for timeframe in timeframes:
if timeframe in indicators:
timeframe_indicators = indicators[timeframe]
# تحقق من محاذاة المتوسطات المتحركة
if self._check_ema_alignment(timeframe_indicators):
score += 0.20 # ⬆️ زيادة من 0.15 إلى 0.20
# مؤشر ADX للقوة الاتجاهية
adx_value = timeframe_indicators.get('adx', 0)
if adx_value > 20: # ⬇️ تخفيض من 25 إلى 20
score += 0.15 # ⬆️ زيادة من 0.1 إلى 0.15
# تحليل الحجم
volume_ratio = timeframe_indicators.get('volume_ratio', 0)
if volume_ratio > 1.2: # ⬇️ تخفيض من 1.5 إلى 1.2
score += 0.10 # ⬆️ زيادة من 0.05 إلى 0.10
# ✅ تعزيز بناءً على تحليل الأنماط
pattern_analysis = symbol_data.get('pattern_analysis')
if (pattern_analysis and
pattern_analysis.get('pattern_confidence', 0) > 0.7 and
pattern_analysis.get('predicted_direction') == 'up'):
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.2
score += pattern_bonus
print(f"📈 Trend following enhanced by pattern: +{pattern_bonus:.3f}")
return min(score, 1.0)
except Exception as error:
print(f"⚠️ Trend following strategy error: {error}")
return 0.3 # ⬆️ زيادة من 0.3 إلى 0.3 (نفس القيمة)
def _check_ema_alignment(self, indicators):
"""التحقق من محاذاة المتوسطات المتحركة"""
required_emas = ['ema_9', 'ema_21', 'ema_50']
if all(ema in indicators for ema in required_emas):
return (indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50'])
return False
async def _mean_reversion_strategy(self, symbol_data, market_context):
"""استراتيجية العودة إلى المتوسط المحسنة - درجات أعلى"""
try:
score = 0.0
current_price = symbol_data['current_price']
indicators = symbol_data.get('advanced_indicators', {})
if '1h' in indicators:
hourly_indicators = indicators['1h']
# تحليل Bollinger Bands
if all(key in hourly_indicators for key in ['bb_upper', 'bb_lower', 'bb_middle']):
position_in_band = (current_price - hourly_indicators['bb_lower']) / (hourly_indicators['bb_upper'] - hourly_indicators['bb_lower'])
if position_in_band < 0.1 and hourly_indicators.get('rsi', 50) < 35:
score += 0.45 # ⬆️ زيادة من 0.4 إلى 0.45
if position_in_band > 0.9 and hourly_indicators.get('rsi', 50) > 65:
score += 0.45 # ⬆️ زيادة من 0.4 إلى 0.45
# تحليل RSI
rsi_value = hourly_indicators.get('rsi', 50)
if rsi_value < 30:
score += 0.35 # ⬆️ زيادة من 0.3 إلى 0.35
elif rsi_value > 70:
score += 0.35 # ⬆️ زيادة من 0.3 إلى 0.35
# ✅ تعزيز بناءً على تحليل الأنماط
pattern_analysis = symbol_data.get('pattern_analysis')
if (pattern_analysis and
pattern_analysis.get('pattern_confidence', 0) > 0.7 and
pattern_analysis.get('predicted_direction') in ['up', 'down']):
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.15
score += pattern_bonus
print(f"🔄 Mean reversion enhanced by pattern: +{pattern_bonus:.3f}")
return min(score, 1.0)
except Exception as error:
print(f"⚠️ Mean reversion strategy error: {error}")
return 0.3
async def _breakout_momentum_strategy(self, symbol_data, market_context):
"""استراتيجية كسر الزخم المحسنة - درجات أعلى"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
for timeframe in ['1h', '15m', '5m']: # ✅ إضافة timeframe إضافية
if timeframe in indicators:
timeframe_indicators = indicators[timeframe]
# ✅ تحليل الحجم - عتبات مخفضة
volume_ratio = timeframe_indicators.get('volume_ratio', 0)
if volume_ratio > 1.8: # ⬇️ تخفيض من 2.0 إلى 1.8
score += 0.25 # ⬆️ زيادة من 0.2 إلى 0.25
elif volume_ratio > 1.3: # ✅ إضافة شرط وسيط
score += 0.15
# ✅ تحليل MACD
if timeframe_indicators.get('macd_hist', 0) > 0:
score += 0.20 # ⬆️ زيادة من 0.15 إلى 0.20
# ✅ تحليل VWAP
if 'vwap' in timeframe_indicators and symbol_data['current_price'] > timeframe_indicators['vwap']:
score += 0.15 # ⬆️ زيادة من 0.1 إلى 0.15
# ✅ إضافة شرط RSI إضافي
rsi_value = timeframe_indicators.get('rsi', 50)
if 40 <= rsi_value <= 70: # نطاق RSI صحي
score += 0.10
# ✅ تعزيز بناءً على تحليل الأنماط - تأثير كبير على breakout
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.3
score += pattern_bonus
print(f"🚀 Breakout momentum significantly enhanced by pattern: +{pattern_bonus:.3f}")
# ✅ ضمان حد أدنى للدرجة إذا كانت هناك إشارات إيجابية
if score > 0.2:
score = max(score, 0.4) # ⬆️ ضمان حد أدنى 0.4 إذا كانت هناك إشارات
return min(score, 1.0)
except Exception as error:
print(f"⚠️ Breakout momentum strategy error: {error}")
return 0.4 # ⬆️ زيادة من 0.3 إلى 0.4
async def _volume_spike_strategy(self, symbol_data, market_context):
"""استراتيجية ارتفاع الحجم المحسنة - درجات أعلى"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
for timeframe in ['1h', '15m', '5m']:
if timeframe in indicators:
volume_ratio = indicators[timeframe].get('volume_ratio', 0)
if volume_ratio > 3.0:
score += 0.45 # ⬆️ زيادة من 0.4 إلى 0.45
elif volume_ratio > 2.0:
score += 0.25 # ⬆️ زيادة من 0.2 إلى 0.25
elif volume_ratio > 1.5: # ✅ إضافة شرط وسيط
score += 0.15
# ✅ تعزيز بناءً على تحليل الأنماط مع ارتفاع الحجم
pattern_analysis = symbol_data.get('pattern_analysis')
if (pattern_analysis and
pattern_analysis.get('pattern_confidence', 0) > 0.7 and
any(indicators[tf].get('volume_ratio', 0) > 2.0 for tf in ['1h', '15m'] if tf in indicators)):
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.2
score += pattern_bonus
print(f"💧 Volume spike enhanced by pattern: +{pattern_bonus:.3f}")
return min(score, 1.0)
except Exception as error:
print(f"⚠️ Volume spike strategy error: {error}")
return 0.3
async def _whale_tracking_strategy(self, symbol_data, market_context):
"""استراتيجية تتبع الحيتان المحسنة - درجات أعلى"""
try:
score = 0.0
# ✅ الإصلاح: استخدام الدالة الآمنة الجديدة
whale_data = await self.data_manager.get_whale_data_safe_async(symbol_data['symbol'])
# استخدام البيانات الحقيقية فقط
if not whale_data.get('data_available', False):
return 0.2 # ⬆️ زيادة من 0.1 إلى 0.2 (قيمة أساسية أعلى)
total_transactions = whale_data.get('transfer_count', 0)
whale_volume = whale_data.get('total_volume', 0)
# ✅ معايير مرنة للسماح بمزيد من المرشحين
if total_transactions >= 2: # ⬇️ تخفيض من 3 إلى 2
score += 0.35 # ⬆️ زيادة من 0.3 إلى 0.35
elif total_transactions >= 1: # ⬇️ تخفيض من 5 إلى 1
score += 0.25 # ⬆️ زيادة من 0.15 إلى 0.25
if whale_volume > 25000: # ⬇️ تخفيض من 50000 إلى 25000
score += 0.25 # ⬆️ زيادة من 0.2 إلى 0.25
elif whale_volume > 5000: # ⬇️ تخفيض من 10000 إلى 5000
score += 0.15 # ⬆️ زيادة من 0.1 إلى 0.15
# ✅ إضافة نقاط إضافية بناءً على نشاط الحيتان العام
general_whale = market_context.get('general_whale_activity', {})
if general_whale.get('data_available', False) and general_whale.get('transaction_count', 0) > 0:
score += 0.15 # ⬆️ زيادة من 0.1 إلى 0.15
return min(score, 1.0)
except Exception as error:
print(f"⚠️ Whale tracking failed: {error}")
return 0.2 # ⬆️ زيادة من 0.1 إلى 0.2
async def _pattern_recognition_strategy(self, symbol_data, market_context):
"""استراتيجية التعرف على الأنماط المحسنة - درجات أعلى"""
try:
score = 0.0
indicators = symbol_data.get('advanced_indicators', {})
# ✅ تعزيز كبير بناءً على تحليل الأنماط من LLM
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
score += pattern_analysis.get('pattern_confidence', 0) * 0.8
print(f"🎯 Pattern recognition significantly enhanced: +{score:.3f}")
else:
# التحليل التقليدي إذا لم يكن هناك نمط من LLM
for timeframe in ['4h', '1h']:
if timeframe in indicators:
timeframe_indicators = indicators[timeframe]
# نمط الزخم الصعودي
if (timeframe_indicators.get('rsi', 50) > 60 and
timeframe_indicators.get('macd_hist', 0) > 0 and
timeframe_indicators.get('volume_ratio', 0) > 1.5):
score += 0.35 # ⬆️ زيادة من 0.3 إلى 0.35
# نمط الزخم الهبوطي
if (timeframe_indicators.get('rsi', 50) < 40 and
timeframe_indicators.get('stoch_rsi_k', 50) < 20):
score += 0.35 # ⬆️ زيادة من 0.3 إلى 0.35
return min(score, 1.0)
except Exception as error:
print(f"⚠️ Pattern recognition strategy error: {error}")
return 0.3
async def _hybrid_ai_strategy(self, symbol_data, market_context):
"""استراتيجية الهجين الذكية المحسنة - درجات أعلى"""
try:
score = 0.0
monte_carlo_probability = symbol_data.get('monte_carlo_probability', 0.5)
final_score = symbol_data.get('final_score', 0.5)
score += monte_carlo_probability * 0.4
score += final_score * 0.3
# تحليل سياق السوق
if market_context.get('btc_sentiment') == 'BULLISH':
score += 0.25 # ⬆️ زيادة من 0.2 إلى 0.25
elif market_context.get('btc_sentiment') == 'BEARISH':
score -= 0.08 # ⬆️ تخفيض من 0.1 إلى 0.08
# تحليل نشاط الحيتان العام
whale_activity = market_context.get('general_whale_activity', {})
if whale_activity.get('sentiment') == 'BULLISH':
score += 0.15 # ⬆️ زيادة من 0.1 إلى 0.15
# ✅ تعزيز بناءً على تحليل الأنماط
pattern_analysis = symbol_data.get('pattern_analysis')
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.7:
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.25
score += pattern_bonus
print(f"🤖 Hybrid AI enhanced by pattern: +{pattern_bonus:.3f}")
return max(0.0, min(score, 1.0))
except Exception as error:
print(f"⚠️ Hybrid AI strategy error: {error}")
return 0.3
async def _fallback_strategy_score(self, strategy_name, symbol_data, market_context):
"""درجات استراتيجية احتياطية محسنة"""
try:
base_score = symbol_data.get('final_score', 0.5)
if strategy_name == 'trend_following':
indicators = symbol_data.get('advanced_indicators', {})
if '1h' in indicators:
rsi_value = indicators['1h'].get('rsi', 50)
ema_9 = indicators['1h'].get('ema_9')
ema_21 = indicators['1h'].get('ema_21')
if ema_9 and ema_21 and ema_9 > ema_21 and 40 <= rsi_value <= 60:
return 0.6
return 0.4
elif strategy_name == 'mean_reversion':
current_price = symbol_data.get('current_price', 0)
indicators = symbol_data.get('advanced_indicators', {})
if '1h' in indicators:
rsi_value = indicators['1h'].get('rsi', 50)
bb_lower = indicators['1h'].get('bb_lower')
if bb_lower and current_price <= bb_lower * 1.02 and rsi_value < 35:
return 0.7
return 0.3
elif strategy_name == 'breakout_momentum':
volume_ratio = symbol_data.get('advanced_indicators', {}).get('1h', {}).get('volume_ratio', 0)
if volume_ratio > 1.5:
return 0.6
return 0.4
elif strategy_name == 'whale_tracking':
whale_data = symbol_data.get('whale_data', {})
if not whale_data.get('data_available', False):
return 0.2 # ⬆️ زيادة من 0.1 إلى 0.2
total_transactions = whale_data.get('transfer_count', 0)
if total_transactions >= 3:
return 0.5
return 0.3
return base_score
except Exception as error:
print(f"⚠️ Fallback strategy failed for {strategy_name}: {error}")
return 0.3
class MLProcessor:
def __init__(self, market_context, data_manager, learning_engine):
self.market_context = market_context
self.data_manager = data_manager
self.learning_engine = learning_engine
self.technical_analyzer = AdvancedTechnicalAnalyzer()
self.strategy_engine = MultiStrategyEngine(data_manager, learning_engine)
self.pattern_tracker = PatternPerformanceTracker()
def _validate_rsi_safety(self, indicators):
"""التحقق العاجل من سلامة مؤشر RSI"""
rsi_warnings = []
critical_issues = 0
timeframes_to_check = ['5m', '15m', '1h', '4h']
for timeframe in timeframes_to_check:
if timeframe in indicators:
rsi_value = indicators[timeframe].get('rsi')
if rsi_value:
if rsi_value > 80:
rsi_warnings.append(f"🚨 RSI CRITICAL in {timeframe}: {rsi_value} - EXTREME OVERBOUGHT")
critical_issues += 1
elif rsi_value > 75:
rsi_warnings.append(f"⚠️ RSI WARNING in {timeframe}: {rsi_value} - STRONG OVERBOUGHT")
elif rsi_value > 70:
rsi_warnings.append(f"📈 RSI HIGH in {timeframe}: {rsi_value} - OVERBOUGHT")
# إذا كان هناك إطارين زمنيين أو أكثر في منطقة الخطر، نرفض المرشح
is_safe = critical_issues < 2
return is_safe, rsi_warnings
def _validate_indicators_quality_enhanced(self, indicators, current_price):
"""تحسين التحقق من جودة المؤشرات"""
quality_issues = []
# التحقق من RSI
rsi_safe, rsi_warnings = self._validate_rsi_safety(indicators)
if not rsi_safe:
quality_issues.extend(rsi_warnings)
# التحقق من تناقض المؤشرات
bullish_signals = 0
bearish_signals = 0
for timeframe, data in indicators.items():
# إشارات صعودية
if data.get('macd_hist', 0) > 0:
bullish_signals += 1
if data.get('rsi', 50) > 70: # RSI مرتفع يعتبر إشارة بيع
bearish_signals += 1
if 'ema_9' in data and 'ema_21' in data:
if data['ema_9'] > data['ema_21']:
bullish_signals += 1
if bullish_signals > 0 and bearish_signals > bullish_signals:
quality_issues.append("⚠️ Conflicting signals: More bearish than bullish indicators")
return quality_issues
def _calculate_enhanced_score_with_safety(self, base_analysis, strategy_scores, quality_issues):
"""حساب النقاط مع مراعاة عوامل السلامة"""
base_score = base_analysis.get('final_score', 0.5)
strategy_average = sum(strategy_scores.values()) / len(strategy_scores) if strategy_scores else 0.5
# خصم النقاط بناءً على مشاكل الجودة
safety_penalty = 0.0
for issue in quality_issues:
if '🚨 RSI CRITICAL' in issue:
safety_penalty += 0.3
elif '⚠️ RSI WARNING' in issue:
safety_penalty += 0.15
elif '📈 RSI HIGH' in issue:
safety_penalty += 0.05
enhanced_score = (base_score * 0.4) + (strategy_average * 0.6)
enhanced_score = max(0.0, enhanced_score - safety_penalty)
return min(enhanced_score, 1.0)
async def process_and_score_symbol_enhanced(self, raw_data):
"""معالجة وتحليل الرمز مع نظام التعلم والاستراتيجيات - الإصدار المحسّن"""
try:
if not raw_data or not raw_data.get('ohlcv'):
print(f"⚠️ Skipping {raw_data.get('symbol', 'unknown')} - no OHLCV data")
return None
# ✅ تمرير بيانات الشموع الخام للتحليل اللاحق
raw_data['raw_ohlcv'] = raw_data.get('ohlcv', {})
base_analysis = await self.process_and_score_symbol(raw_data)
if not base_analysis:
return None
try:
# التحقق المحسن من الجودة
current_price = base_analysis.get('current_price', 0)
quality_issues = self._validate_indicators_quality_enhanced(
base_analysis.get('advanced_indicators', {}),
current_price
)
# طباعة تحذيرات الجودة
if quality_issues:
print(f"🔍 Quality issues for {base_analysis.get('symbol')}:")
for issue in quality_issues:
print(f" {issue}")
# ✅ تقييم الاستراتيجيات باستخدام نظام التعلم مع التحقق من الوجود
if hasattr(self, 'strategy_engine') and self.strategy_engine:
strategy_scores, base_scores = await self.strategy_engine.evaluate_all_strategies(base_analysis, self.market_context)
base_analysis['strategy_scores'] = strategy_scores
base_analysis['base_strategy_scores'] = base_scores # ✅ حفظ الدرجات الأساسية
# ✅ تحديد أفضل استراتيجية بناءً على الدرجات الأساسية (بدون أوزان)
if base_scores:
best_strategy = max(base_scores.items(), key=lambda x: x[1])
best_strategy_name = best_strategy[0]
best_strategy_score = best_strategy[1]
base_analysis['recommended_strategy'] = best_strategy_name
base_analysis['strategy_confidence'] = best_strategy_score
print(f"🎯 أفضل استراتيجية لـ {base_analysis.get('symbol')}: {best_strategy_name} (ثقة: {best_strategy_score:.3f})")
# ✅ تخفيض عتبة الثقة للسماح بمزيد من الاستراتيجيات
if best_strategy_score > 0.3: # ⬇️ تخفيض من 0.6 إلى 0.3
base_analysis['target_strategy'] = best_strategy_name
print(f"✅ استخدام استراتيجية متخصصة: {best_strategy_name}")
else:
base_analysis['target_strategy'] = 'GENERIC'
print(f"🔄 استخدام استراتيجية عامة (ثقة منخفضة: {best_strategy_score:.3f})")
else:
base_analysis['recommended_strategy'] = 'GENERIC'
base_analysis['strategy_confidence'] = 0.3 # ⬆️ زيادة من 0.5 إلى 0.3
base_analysis['target_strategy'] = 'GENERIC'
print("🔄 استخدام استراتيجية عامة (لا توجد درجات استراتيجية)")
# ✅ استخدام الدالة المحسنة لحساب النقاط
enhanced_score = self._calculate_enhanced_score_with_safety(
base_analysis, strategy_scores, quality_issues
)
base_analysis['enhanced_final_score'] = enhanced_score
else:
print("⚠️ Strategy engine not available, using base analysis only")
base_analysis['strategy_scores'] = {}
base_analysis['enhanced_final_score'] = base_analysis.get('final_score', 0.5)
base_analysis['recommended_strategy'] = 'GENERIC'
base_analysis['strategy_confidence'] = 0.3
base_analysis['target_strategy'] = 'GENERIC'
base_analysis['quality_warnings'] = quality_issues
except Exception as strategy_error:
print(f"⚠️ Strategy evaluation failed for {base_analysis.get('symbol')}: {strategy_error}")
base_analysis['strategy_scores'] = {}
base_analysis['enhanced_final_score'] = base_analysis.get('final_score', 0.5)
base_analysis['recommended_strategy'] = 'GENERIC'
base_analysis['strategy_confidence'] = 0.3 # ⬆️ زيادة من 0.5 إلى 0.3
base_analysis['target_strategy'] = 'GENERIC'
base_analysis['quality_warnings'] = ['Strategy evaluation failed']
return base_analysis
except Exception as error:
print(f"❌ Enhanced processing failed for {raw_data.get('symbol')}: {error}")
return await self.process_and_score_symbol(raw_data)
def _improve_fibonacci_levels(self, daily_dataframe, current_price):
"""تحسين حساب مستويات Fibonacci لتتوافق مع السعر الحالي"""
if len(daily_dataframe) < 50:
return {}
# استخدام آخر 50 يومًا لحساب القمة والقاع
recent_high = float(daily_dataframe['high'].iloc[-50:].max())
recent_low = float(daily_dataframe['low'].iloc[-50:].min())
# إذا كان السعر الحالي خارج النطاق، نعدل النطاق
if current_price > recent_high:
recent_high = current_price * 1.05 # نضيف هامش 5%
if current_price < recent_low:
recent_low = current_price * 0.95 # نخصم هامش 5%
difference = recent_high - recent_low
if difference <= 0: # تجنب القسمة على الصفر
return {}
return {
"0.0%": recent_high,
"23.6%": recent_high - 0.236 * difference,
"38.2%": recent_high - 0.382 * difference,
"50.0%": recent_high - 0.50 * difference,
"61.8%": recent_high - 0.618 * difference,
"78.6%": recent_high - 0.786 * difference,
"100.0%": recent_low
}
async def process_and_score_symbol(self, raw_data):
"""معالجة وتحليل الرمز الأساسي"""
symbol = raw_data['symbol']
ohlcv_data = raw_data['ohlcv']
reasons_for_candidacy = raw_data.get('reasons', [])
if not ohlcv_data:
print(f"❌ No OHLCV data for {symbol}")
return None
try:
all_indicators = {}
for timeframe, candles in ohlcv_data.items():
if candles:
dataframe = pd.DataFrame(candles, columns=['time', 'open', 'high', 'low', 'close', 'volume'])
dataframe[['open', 'high', 'low', 'close', 'volume']] = dataframe[['open', 'high', 'low', 'close', 'volume']].astype(float)
all_indicators[timeframe] = self._calculate_indicators(dataframe, timeframe)
hourly_dataframe = pd.DataFrame(ohlcv_data.get('1h', []), columns=['time', 'open', 'high', 'low', 'close', 'volume'])
if hourly_dataframe.empty:
print(f"❌ Skipping {symbol} due to insufficient 1h data.")
return None
hourly_dataframe[['open', 'high', 'low', 'close', 'volume']] = hourly_dataframe[['open', 'high', 'low', 'close', 'volume']].astype(float)
try:
current_price = float(hourly_dataframe['close'].iloc[-1])
if ohlcv_data.get('5m'):
five_minute_dataframe = pd.DataFrame(ohlcv_data['5m'], columns=['time', 'open', 'high', 'low', 'close', 'volume'])
if not five_minute_dataframe.empty:
five_minute_dataframe[['open', 'high', 'low', 'close', 'volume']] = five_minute_dataframe[['open', 'high', 'low', 'close', 'volume']].astype(float)
current_price = float(five_minute_dataframe['close'].iloc[-1])
liquidity_score = self._calculate_liquidity_score(hourly_dataframe)
daily_dataframe = pd.DataFrame(ohlcv_data.get('1d', []), columns=['time', 'open', 'high', 'low', 'close', 'volume'])
if not daily_dataframe.empty:
daily_dataframe[['open', 'high', 'low', 'close', 'volume']] = daily_dataframe[['open', 'high', 'low', 'close', 'volume']].astype(float)
average_daily_volume = float(daily_dataframe['volume'].mean()) if not daily_dataframe.empty else 0.0
# استخدام الدالة المحسنة لحساب مستويات Fibonacci
fibonacci_levels = self._improve_fibonacci_levels(daily_dataframe, current_price)
try:
whale_data = await self.data_manager.get_whale_data_safe_async(symbol)
except Exception as whale_error:
print(f"⚠️ Whale data failed for {symbol}: {whale_error}. No whale data available.")
whale_data = {
"transfer_count": 0,
"total_volume": 0,
"source": "no_data",
"data_available": False
}
whale_score = self._calculate_whale_activity_score(whale_data)
opportunity_classification = self.classify_opportunity_type(all_indicators, current_price)
initial_score = self._calculate_initial_score(all_indicators, current_price, self.market_context)
monte_carlo_probability = self._run_monte_carlo_simulation(hourly_dataframe)
print(f"🎲 Monte Carlo Simulation for {symbol}: Success Probability = {monte_carlo_probability:.2%}")
final_score = (0.35 * initial_score) + (0.50 * monte_carlo_probability) + (0.15 * whale_score)
final_score *= opportunity_classification['confidence']
normalized_indicators = {timeframe: self._normalize_features_corrected(indicators) for timeframe, indicators in all_indicators.items()}
return {
'symbol': symbol, 'reasons_for_candidacy': reasons_for_candidacy, 'current_price': float(current_price),
'liquidity_score': float(liquidity_score) if not np.isnan(liquidity_score) else 0.0, 'avg_daily_volume': float(average_daily_volume),
'whale_data': whale_data, 'whale_score': float(whale_score), 'opportunity_type': opportunity_classification,
'sentiment_data': self.market_context, 'fibonacci_levels': fibonacci_levels, 'final_score': float(final_score),
'initial_score': float(initial_score), 'monte_carlo_probability': float(monte_carlo_probability),
'indicators': normalized_indicators, 'advanced_indicators': all_indicators, 'strategy_scores': {},
'recommended_strategy': 'GENERIC', 'enhanced_final_score': float(final_score), 'target_strategy': 'GENERIC',
'raw_ohlcv': ohlcv_data # ✅ إضافة بيانات الشموع الخام
}
except (KeyError, IndexError) as error:
print(f"⚠️ Missing data for {symbol}: {error}")
return None
except Exception as error:
print(f"❌ Failed to process {symbol}: {error}")
import traceback
traceback.print_exc()
return None
def _calculate_indicators(self, dataframe, timeframe):
"""حساب المؤشرات الفنية"""
indicators = {}
if dataframe.empty:
return indicators
if not isinstance(dataframe.index, pd.DatetimeIndex):
try:
dataframe['time'] = pd.to_datetime(dataframe['time'], unit='ms')
dataframe = dataframe.set_index('time', drop=True)
except:
dataframe['time'] = pd.to_datetime(dataframe['time'])
dataframe = dataframe.set_index('time', drop=True)
dataframe = dataframe.sort_index()
if len(dataframe) >= 1 and all(column in dataframe.columns for column in ['high', 'low', 'close', 'volume']):
try:
typical_price = (dataframe['high'] + dataframe['low'] + dataframe['close']) / 3
volume_weighted_average_price = (typical_price * dataframe['volume']).cumsum() / dataframe['volume'].cumsum()
if not volume_weighted_average_price.empty and not pd.isna(volume_weighted_average_price.iloc[-1]):
indicators['vwap'] = float(volume_weighted_average_price.iloc[-1])
except Exception as error:
print(f"⚠️ VWAP calculation failed for {timeframe}: {error}")
if len(dataframe) >= 14:
rsi_series = ta.rsi(dataframe['close'], length=14)
if rsi_series is not None and not rsi_series.empty and rsi_series.iloc[-1] is not np.nan:
indicators['rsi'] = float(rsi_series.iloc[-1])
if len(dataframe) >= 26:
macd = ta.macd(dataframe['close'])
if macd is not None and not macd.empty:
if 'MACDh_12_26_9' in macd.columns and macd['MACDh_12_26_9'].iloc[-1] is not np.nan:
indicators['macd_hist'] = float(macd['MACDh_12_26_9'].iloc[-1])
if 'MACD_12_26_9' in macd.columns and macd['MACD_12_26_9'].iloc[-1] is not np.nan:
indicators['macd_line'] = float(macd['MACD_12_26_9'].iloc[-1])
if 'MACDs_12_26_9' in macd.columns and macd['MACDs_12_26_9'].iloc[-1] is not np.nan:
indicators['macd_signal'] = float(macd['MACDs_12_26_9'].iloc[-1])
if len(dataframe) >= 20:
bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
if bollinger_bands is not None and not bollinger_bands.empty:
if 'BBL_20_2.0' in bollinger_bands.columns and bollinger_bands['BBL_20_2.0'].iloc[-1] is not np.nan:
indicators['bb_lower'] = float(bollinger_bands['BBL_20_2.0'].iloc[-1])
if 'BBU_20_2.0' in bollinger_bands.columns and bollinger_bands['BBU_20_2.0'].iloc[-1] is not np.nan:
indicators['bb_upper'] = float(bollinger_bands['BBU_20_2.0'].iloc[-1])
if 'BBM_20_2.0' in bollinger_bands.columns and bollinger_bands['BBM_20_2.0'].iloc[-1] is not np.nan:
indicators['bb_middle'] = float(bollinger_bands['BBM_20_2.0'].iloc[-1])
if len(dataframe) >= 14:
average_true_range = ta.atr(high=dataframe['high'], low=dataframe['low'], close=dataframe['close'], length=14)
if average_true_range is not None and not average_true_range.empty and average_true_range.iloc[-1] is not np.nan:
indicators['atr'] = float(average_true_range.iloc[-1])
if len(dataframe) >= 26:
ema_12 = ta.ema(dataframe['close'], length=12)
ema_26 = ta.ema(dataframe['close'], length=26)
if ema_12 is not None and not ema_12.empty and ema_12.iloc[-1] is not np.nan:
indicators['ema_12'] = float(ema_12.iloc[-1])
if ema_26 is not None and not ema_26.empty and ema_26.iloc[-1] is not np.nan:
indicators['ema_26'] = float(ema_26.iloc[-1])
return indicators
def _normalize_features_corrected(self, features):
"""تطبيع الميزات بشكل صحيح"""
normalized_features = {}
for key, value in features.items():
if value is None:
normalized_features[key] = 0.0
continue
if key == 'rsi':
normalized_features[key] = max(0, min(100, value))
elif key in ['macd_hist', 'macd_line', 'macd_signal', 'vwap', 'atr']:
normalized_features[key] = value
elif 'ema' in key or 'bb_' in key:
normalized_features[key] = value
else:
try:
if abs(value) > 1000:
normalized_features[key] = value / 1000
else:
normalized_features[key] = value
except:
normalized_features[key] = value
return normalized_features
def _run_monte_carlo_simulation(self, dataframe, number_of_simulations=1000, number_of_steps=20):
"""تشغيل محاكاة مونت كارلو"""
if dataframe.empty or len(dataframe) < 2:
return 0.0
log_returns = np.log(dataframe['close'] / dataframe['close'].shift(1)).dropna()
if log_returns.empty:
return 0.0
mean_return = log_returns.mean()
volatility = log_returns.std()
initial_price = dataframe['close'].iloc[-1]
success_count = 0
for _ in range(number_of_simulations):
random_values = np.random.normal(0, 1, number_of_steps)
daily_returns = np.exp(mean_return - 0.5 * volatility**2 + volatility * random_values)
simulated_prices = initial_price * daily_returns.cumprod()
if (simulated_prices[-1] / initial_price) > 1.02:
success_count += 1
return success_count / number_of_simulations
def _calculate_initial_score(self, indicators, current_price, market_context):
"""حساب النقاط الأولية"""
score = 0.5
fast_timeframes = ['5m', '15m']
for timeframe in fast_timeframes:
timeframe_indicators = indicators.get(timeframe, {})
if not timeframe_indicators:
continue
if 'rsi' in timeframe_indicators:
rsi_value = timeframe_indicators['rsi']
if isinstance(rsi_value, (int, float)):
if rsi_value < 30:
score += 0.2
elif rsi_value < 40:
score += 0.1
elif rsi_value > 70:
score -= 0.1
if 'macd_hist' in timeframe_indicators and timeframe_indicators['macd_hist'] > 0:
score += 0.15
if all(key in timeframe_indicators for key in ['ema_12', 'ema_26']):
if timeframe_indicators['ema_12'] > timeframe_indicators['ema_26']:
score += 0.15
slow_timeframes = ['1h', '4h', '1d']
for timeframe in slow_timeframes:
timeframe_indicators = indicators.get(timeframe, {})
if not timeframe_indicators:
continue
if all(key in timeframe_indicators for key in ['ema_12', 'ema_26']):
if timeframe_indicators['ema_12'] > timeframe_indicators['ema_26']:
score += 0.10
if all(key in timeframe_indicators for key in ['bb_upper', 'bb_lower']):
if current_price > timeframe_indicators['bb_upper']:
score += 0.10
elif current_price <= timeframe_indicators['bb_lower']:
score += 0.05
if '5m' in indicators and 'vwap' in indicators['5m'] and current_price > indicators['5m']['vwap']:
score += 0.10
if market_context:
bitcoin_sentiment = market_context.get('btc_sentiment')
fear_greed_index = market_context.get('fear_and_greed_index', 50)
if bitcoin_sentiment == 'BULLISH' and fear_greed_index > 60:
score *= 1.2
elif bitcoin_sentiment == 'BEARISH' or fear_greed_index < 30:
score *= 0.8
return min(max(score, 0.0), 1.0)
def _normalize_features(self, features):
return self._normalize_features_corrected(features)
def _prepare_data_for_ml(self, all_indicators, current_price):
feature_vector = []
timeframes = ['5m', '15m', '1h', '4h', '1d']
indicator_keys = ['rsi', 'macd_hist', 'macd_line', 'bb_upper', 'bb_lower', 'atr', 'ema_12', 'ema_26', 'vwap']
for timeframe in timeframes:
timeframe_indicators = all_indicators.get(timeframe, {})
for key in indicator_keys:
feature_vector.append(timeframe_indicators.get(key, 0.0))
feature_vector.append(current_price)
return feature_vector
def _calculate_liquidity_score(self, hourly_dataframe):
if hourly_dataframe.empty:
return 0.0
hourly_dataframe['dollar_volume'] = hourly_dataframe['volume'] * hourly_dataframe['close']
return float(hourly_dataframe['dollar_volume'].mean())
def _calculate_fibonacci_levels(self, daily_dataframe):
"""مهملة: استخدام _improve_fibonacci_levels بدلاً من ذلك"""
return self._improve_fibonacci_levels(daily_dataframe, 0)
def classify_opportunity_type(self, indicators, current_price):
fast_signals = 0
slow_signals = 0
for timeframe in ['5m', '15m']:
timeframe_indicators = indicators.get(timeframe, {})
if not timeframe_indicators:
continue
if timeframe_indicators.get('rsi', 100) < 35:
fast_signals += 1
if timeframe_indicators.get('macd_hist', 0) > 0:
fast_signals += 1
if all(key in timeframe_indicators for key in ['ema_12', 'ema_26']):
if timeframe_indicators['ema_12'] > timeframe_indicators['ema_26']:
fast_signals += 1
if timeframe == '5m' and timeframe_indicators.get('vwap') and current_price > timeframe_indicators['vwap'] * 1.02:
fast_signals += 1
for timeframe in ['1h', '4h', '1d']:
timeframe_indicators = indicators.get(timeframe, {})
if not timeframe_indicators:
continue
if 40 <= timeframe_indicators.get('rsi', 50) <= 60:
slow_signals += 1
if all(key in timeframe_indicators for key in ['ema_12', 'ema_26']):
if timeframe_indicators['ema_12'] > timeframe_indicators['ema_26']:
slow_signals += 1
if timeframe_indicators.get('bb_middle') and current_price > timeframe_indicators['bb_middle']:
slow_signals += 1
if fast_signals >= 3:
return {
"type": "FAST_PUMP", "timeframe": "15m-1h", "take_profit_multiplier": 1.08, "stop_loss_multiplier": 0.97,
"confidence": min(fast_signals / 6.0, 1.0), "description": "فرصة صعود سريع قوية على الأطر الزمنية القصيرة"
}
elif slow_signals >= 3:
return {
"type": "SLOW_GROWTH", "timeframe": "4h-1d", "take_profit_multiplier": 1.05, "stop_loss_multiplier": 0.95,
"confidence": min(slow_signals / 6.0, 1.0), "description": "فرصة نمو مستدام على الأطر الزمنية الطويلة"
}
return {
"type": "NEUTRAL", "timeframe": "N/A", "take_profit_multiplier": 1.05, "stop_loss_multiplier": 0.95,
"confidence": 0.3, "description": "لا توجد إشارات واضحة لنوع محدد من الفرص"
}
def _calculate_whale_activity_score(self, whale_data):
"""حساب درجة نشاط الحيتان بناءً على البيانات الحقيقية فقط"""
if not whale_data.get('data_available', False):
return 0.0
total_transactions = whale_data.get('transfer_count', 0)
total_volume = whale_data.get('total_volume', 0)
score = 0.0
if total_transactions >= 10:
score += 0.3
elif total_transactions >= 5:
score += 0.15
if total_volume > 500000:
score += 0.2
elif total_volume > 100000:
score += 0.1
return min(score, 0.5)
def filter_top_candidates(self, candidates, number_of_candidates=10):
"""تصفية أفضل المرشحين"""
valid_candidates = [candidate for candidate in candidates if candidate is not None]
return sorted(valid_candidates, key=lambda candidate: candidate.get('enhanced_final_score', candidate.get('final_score', 0)), reverse=True)[:number_of_candidates]
# دوال المحاكاة المحلية للاستخدام كبديل
def local_analyze_opportunity(candidate_data):
"""تحليل محسن مع مراعاة مخاطر RSI"""
score = candidate_data.get('enhanced_final_score', candidate_data.get('final_score', 0))
quality_warnings = candidate_data.get('quality_warnings', [])
# التحقق من تحذيرات RSI
rsi_critical = any('🚨 RSI CRITICAL' in warning for warning in quality_warnings)
rsi_warning = any('⚠️ RSI WARNING' in warning for warning in quality_warnings)
if rsi_critical:
return {
"action": "HOLD",
"reasoning": "Local analysis: CRITICAL RSI levels detected - extreme overbought condition. High risk of correction.",
"trade_type": "NONE",
"stop_loss": None,
"take_profit": None,
"expected_target_minutes": 15,
"confidence_level": 0.1,
"model_source": "local_safety_filter",
"strategy": "GENERIC"
}
advanced_indicators = candidate_data.get('advanced_indicators', {})
strategy_scores = candidate_data.get('strategy_scores', {})
if not advanced_indicators:
return {
"action": "HOLD",
"reasoning": "Local analysis: Insufficient advanced indicator data.",
"trade_type": "NONE",
"stop_loss": None,
"take_profit": None,
"expected_target_minutes": 15,
"confidence_level": 0.3,
"model_source": "local",
"strategy": "GENERIC"
}
action = "HOLD"
reasoning = "Local analysis: No strong buy signal based on enhanced rules."
trade_type = "NONE"
stop_loss = None
take_profit = None
expected_minutes = 15
confidence = 0.3
five_minute_indicators = advanced_indicators.get('5m', {})
one_hour_indicators = advanced_indicators.get('1h', {})
buy_conditions = 0
total_conditions = 0
if isinstance(score, (int, float)) and score > 0.70:
buy_conditions += 1
total_conditions += 1
# شرط RSI أكثر تحفظاً
rsi_five_minute = five_minute_indicators.get('rsi', 50)
if 30 <= rsi_five_minute <= 65: # نطاق آمن لـ RSI
buy_conditions += 1
total_conditions += 1
if five_minute_indicators.get('macd_hist', 0) > 0:
buy_conditions += 1
total_conditions += 1
if (five_minute_indicators.get('ema_9', 0) > five_minute_indicators.get('ema_21', 0) and
one_hour_indicators.get('ema_9', 0) > one_hour_indicators.get('ema_21', 0)):
buy_conditions += 1
total_conditions += 1
if five_minute_indicators.get('volume_ratio', 0) > 1.5:
buy_conditions += 1
total_conditions += 1
confidence = buy_conditions / total_conditions if total_conditions > 0 else 0.3
# خصم الثقة بناءً على تحذيرات RSI
if rsi_warning:
confidence *= 0.7 # خصم 30% للتحذيرات
reasoning += " RSI warning applied."
if confidence >= 0.6:
action = "BUY"
current_price = candidate_data['current_price']
trade_type = "LONG"
# وقف خسارة أكثر تحفظاً لـ RSI المرتفع
if rsi_warning:
stop_loss = current_price * 0.93 # 7% stop loss للتحذيرات
else:
stop_loss = current_price * 0.95 # 5% stop loss عادي
if 'bb_upper' in five_minute_indicators:
take_profit = five_minute_indicators['bb_upper'] * 1.02
else:
take_profit = current_price * 1.05
if confidence >= 0.8:
expected_minutes = 10
elif confidence >= 0.6:
expected_minutes = 18
else:
expected_minutes = 25
reasoning = f"Local enhanced analysis: Strong buy signal with {buy_conditions}/{total_conditions} conditions met. Confidence: {confidence:.2f}"
if rsi_warning:
reasoning += " (RSI warning - trading with caution)"
return {
"action": action,
"reasoning": reasoning,
"trade_type": trade_type,
"stop_loss": stop_loss,
"take_profit": take_profit,
"expected_target_minutes": expected_minutes,
"confidence_level": confidence,
"model_source": "local",
"strategy": "GENERIC"
}
def local_re_analyze_trade(trade_data, processed_data):
current_price = processed_data['current_price']
stop_loss = trade_data['stop_loss']
take_profit = trade_data['take_profit']
action = "HOLD"
reasoning = "Local re-analysis: No significant change to trigger an update or close."
if stop_loss and current_price <= stop_loss:
action = "CLOSE_TRADE"
reasoning = "Local re-analysis: Stop loss has been hit."
elif take_profit and current_price >= take_profit:
action = "CLOSE_TRADE"
reasoning = "Local re-analysis: Take profit has been hit."
strategy = trade_data.get('strategy', 'GENERIC')
if strategy == 'unknown':
strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
return {
"action": action,
"reasoning": reasoning,
"new_stop_loss": None,
"new_take_profit": None,
"new_expected_minutes": None,
"model_source": "local",
"strategy": strategy
}
print("✅ Enhanced ML System Loaded - Integrated with Learning Engine - REAL DATA ONLY - Optimized Strategy Scoring with Pattern Enhancement") |