File size: 17,041 Bytes
fd9c5b3 3bcda1c 713e0f7 de73d0d 22184d7 713e0f7 3bcda1c 22184d7 de73d0d 22184d7 3bcda1c fd9c5b3 ac3f01d 3bcda1c fd9c5b3 3bcda1c ac3f01d 3bcda1c ac3f01d 22184d7 3bcda1c ac3f01d 3bcda1c fd9c5b3 cd047ad 22184d7 ac3f01d 713e0f7 ac3f01d 713e0f7 ac3f01d 3bcda1c ac3f01d 713e0f7 ac3f01d 713e0f7 ac3f01d 713e0f7 de73d0d 3bcda1c 22184d7 3bcda1c 22184d7 ac3f01d 713e0f7 fd9c5b3 713e0f7 cd047ad fd9c5b3 cd047ad 713e0f7 de73d0d 713e0f7 de73d0d 713e0f7 fd9c5b3 713e0f7 de73d0d 713e0f7 fd9c5b3 713e0f7 22184d7 713e0f7 de73d0d 713e0f7 de73d0d 22184d7 713e0f7 22184d7 713e0f7 de73d0d 713e0f7 de73d0d 713e0f7 22184d7 713e0f7 22184d7 713e0f7 de73d0d 713e0f7 22184d7 713e0f7 22184d7 de73d0d 713e0f7 3bcda1c 713e0f7 3bcda1c ac3f01d 3bcda1c ac3f01d 3bcda1c fd9c5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# ml_engine/monte_carlo.py (Updated to V10.0 - Added Simple Sim for Ranker)
import numpy as np
import pandas as pd
from arch import arch_model
import lightgbm as lgb
import traceback
import json
try:
import pandas_ta as ta
except ImportError:
print("⚠️ مكتبة pandas_ta غير موجودة، سيتم استخدام حسابات يدوية للمؤشرات.")
ta = None
def _sanitize_results_for_json(results_dict):
"""
Recursively converts numpy types (ndarray, np.float64, etc.)
in a dictionary to standard Python types (list, float)
to make it JSON serializable.
"""
if isinstance(results_dict, dict):
return {k: _sanitize_results_for_json(v) for k, v in results_dict.items()}
elif isinstance(results_dict, list):
return [_sanitize_results_for_json(v) for v in results_dict]
elif isinstance(results_dict, np.ndarray):
return results_dict.tolist()
elif isinstance(results_dict, (np.float64, np.float32)):
return float(results_dict)
elif isinstance(results_dict, (np.int64, np.int32)):
return int(results_dict)
else:
return results_dict
class MonteCarloAnalyzer:
def __init__(self):
self.simulation_results = {}
# 🔴 --- START OF NEW FUNCTION (V10.0) --- 🔴
# (هذه الدالة هي التي يحتاجها الرانكر V9.8)
def generate_1h_price_distribution_simple(self, closes_np: np.ndarray, target_profit_percent=0.005) -> dict:
"""
(V10.0) نسخة سريعة جداً (غير متزامنة) مخصصة للرانكر.
تقبل numpy array مباشرة وتُرجع الميزات المطلوبة فقط.
"""
try:
# (نحتاج 100 شمعة كما في Colab)
if len(closes_np) < 30:
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
current_price = closes_np[-1]
if current_price <= 0:
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
log_returns = np.log(closes_np[1:] / closes_np[:-1])
log_returns = log_returns[~np.isnan(log_returns) & ~np.isinf(log_returns)]
if len(log_returns) < 20:
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
mean_return = np.mean(log_returns)
std_return = np.std(log_returns)
if std_return < 1e-5: # (واقي العملة المستقرة)
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
num_simulations = 1000 # (سريعة، كما في Colab)
t_df = 10
jump_lambda = 0.05
jump_mean = 0.0
jump_std = std_return * 3.0
drift = (mean_return - 0.5 * std_return**2)
diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
jump_mask = np.random.rand(num_simulations) < jump_lambda
jump_sizes = np.random.normal(jump_mean, jump_std, size=num_simulations)
jump_component = np.zeros(num_simulations)
jump_component[jump_mask] = jump_sizes[jump_mask]
simulated_log_returns = drift + diffusion + jump_component
simulated_prices = current_price * np.exp(simulated_log_returns)
percentiles = np.percentile(simulated_prices, [5])
VaR_95_price = percentiles[0]
# (كنسبة مئوية، مع واقي من القسمة على صفر)
VaR_95_value = (current_price - VaR_95_price) / (current_price + 1e-9)
target_price = current_price * (1 + target_profit_percent)
probability_of_gain = np.mean(simulated_prices >= target_price)
return {
'mc_prob_gain': probability_of_gain,
'mc_var_95_pct': VaR_95_value,
'error': False
}
except Exception:
# (إرجاع قيم محايدة في حالة الفشل)
return {'mc_prob_gain': 0.5, 'mc_var_95_pct': 0.0, 'error': True}
# 🔴 --- END OF NEW FUNCTION (V10.0) --- 🔴
async def generate_1h_price_distribution(self, ohlcv_data, target_profit_percent=0.005):
"""
(المرحلة 1 - سريعة) - (للاستخدامات القديمة إن وجدت)
"""
try:
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 30:
if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 50:
closes = np.array([candle[4] for candle in ohlcv_data['15m']])
else:
self.simulation_results = {'error': 'Insufficient OHLCV data (< 30 candles 1h)'}
return None
else:
all_closes = [candle[4] for candle in ohlcv_data['1h']]
if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 16:
all_closes.extend([candle[4] for candle in ohlcv_data['15m'][-16:]])
closes = np.array(all_closes)
if len(closes) < 30:
self.simulation_results = {'error': 'Insufficient combined OHLCV data (< 30 candles)'}
return None
current_price = closes[-1]
if current_price <= 0:
self.simulation_results = {'error': 'Invalid current price <= 0'}
return None
log_returns = np.log(closes[1:] / closes[:-1])
log_returns = log_returns[~np.isnan(log_returns) & ~np.isinf(log_returns)]
if len(log_returns) < 20:
self.simulation_results = {'error': 'Insufficient log returns (< 20)'}
return None
mean_return = np.mean(log_returns)
std_return = np.std(log_returns)
if std_return < 1e-5: # (واقي العملة المستقرة)
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
return None
num_simulations = 5000
t_df = 10
jump_lambda = 0.05
jump_mean = 0.0
jump_std = std_return * 3.0
drift = (mean_return - 0.5 * std_return**2)
diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
jump_mask = np.random.rand(num_simulations) < jump_lambda
jump_sizes = np.random.normal(jump_mean, jump_std, size=num_simulations)
jump_component = np.zeros(num_simulations)
jump_component[jump_mask] = jump_sizes[jump_mask]
simulated_log_returns = drift + diffusion + jump_component
simulated_prices = current_price * np.exp(simulated_log_returns)
mean_price = np.mean(simulated_prices)
median_price = np.median(simulated_prices)
percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
pi_95 = [percentiles[0], percentiles[-1]]
pi_90 = [percentiles[1], percentiles[-2]]
pi_50 = [percentiles[2], percentiles[4]]
VaR_95_price = percentiles[1]
VaR_95_value = current_price - VaR_95_price
losses_beyond_var = simulated_prices[simulated_prices <= VaR_95_price]
CVR_95_price = np.mean(losses_beyond_var) if len(losses_beyond_var) > 0 else VaR_95_price
CVaR_95_value = current_price - CVR_95_price
target_price = current_price * (1 + target_profit_percent)
probability_of_gain = np.mean(simulated_prices >= target_price)
self.simulation_results = {
'simulation_model': 'Phase1_Student-t_JumpDiffusion',
'num_simulations': num_simulations,
'current_price': current_price,
'distribution_summary': {'mean_price': mean_price, 'median_price': median_price},
'prediction_interval_50': pi_50,
'prediction_interval_90': pi_90,
'prediction_interval_95': pi_95,
'risk_metrics': {
'VaR_95_price': VaR_95_price,
'VaR_95_value': VaR_95_value,
'CVaR_95_price': CVR_95_price,
'CVaR_95_value': CVaR_95_value,
},
'probability_of_gain': probability_of_gain,
'raw_simulated_prices': simulated_prices[:100]
}
return _sanitize_results_for_json(self.simulation_results)
except Exception as e:
print(f"❌ خطأ فادح في محاكاة مونت كارلو (Phase 1): {e}")
traceback.print_exc()
self.simulation_results = {'error': f'Phase 1 MC Error: {str(e)}'}
return None
async def generate_1h_distribution_advanced(self, ohlcv_data, target_profit_percent=0.005):
"""
(المرحلة 2+3 - متقدمة) - (للاستخدام في الطبقة 2)
"""
try:
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 50:
self.simulation_results = {'error': 'Advanced MC requires 1h data (>= 50 candles)'}
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
candles = ohlcv_data['1h']
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
df.set_index('timestamp', inplace=True)
df.sort_index(inplace=True)
if df.empty or len(df) < 50:
raise ValueError("DataFrame creation failed or insufficient data after processing")
current_price = df['close'].iloc[-1]
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
std_return_check = np.std(log_returns_series.iloc[-30:])
if std_return_check < 1e-5: # (واقي العملة المستقرة)
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
try:
garch_model = arch_model(log_returns_series * 100, vol='Garch', p=1, q=1, dist='t', rescale=False)
res = garch_model.fit(update_freq=0, disp='off')
forecast = res.forecast(horizon=1)
forecasted_var = forecast.variance.iloc[-1, 0] / (100**2)
forecasted_std_return = np.sqrt(forecasted_var)
except Exception as garch_err:
forecasted_std_return = std_return_check
print(f"⚠️ GARCH failed, using std: {garch_err}")
# 4. (Phase 3) توقع الميل (Drift) باستخدام LightGBM
try:
if ta:
df['rsi'] = ta.rsi(df['close'], length=14)
macd = ta.macd(df['close'], fast=12, slow=26, signal=9)
df['macd_hist'] = macd['MACDh_12_26_9']
else:
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / (loss + 1e-9)
df['rsi'] = 100 - (100 / (1 + rs))
df['macd_hist'] = df['close'].ewm(span=12).mean() - df['close'].ewm(span=26).mean()
df['lag_1'] = df['log_returns'].shift(1)
df['lag_2'] = df['log_returns'].shift(2)
features = ['rsi', 'macd_hist', 'lag_1', 'lag_2']
df.dropna(inplace=True)
if df.empty or len(df) < 20:
raise ValueError("Insufficient data after feature engineering")
df['target'] = df['log_returns'].shift(-1)
df.dropna(inplace=True)
X = df[features]
y = df['target']
X_train, y_train = X.iloc[:-1], y.iloc[:-1]
X_predict = X.iloc[-1:]
lgbm_model = lgb.LGBMRegressor(n_estimators=100, learning_rate=0.1, n_jobs=1, verbose=-1)
lgbm_model.fit(X_train, y_train)
forecasted_mean_return = lgbm_model.predict(X_predict)[0]
except Exception as lgbm_err:
forecasted_mean_return = np.mean(log_returns_series.iloc[-30:])
print(f"⚠️ LGBM failed, using mean: {lgbm_err}")
# 5. تشغيل المحاكاة بالقيم الديناميكية
num_simulations = 5000
t_df = 10
jump_lambda = 0.05
jump_mean = 0.0
jump_std = forecasted_std_return * 3.0
mean_return = forecasted_mean_return
std_return = forecasted_std_return
drift = (mean_return - 0.5 * std_return**2)
diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
jump_mask = np.random.rand(num_simulations) < jump_lambda
jump_sizes = np.random.normal(jump_mean, jump_std, size=num_simulations)
jump_component = np.zeros(num_simulations)
jump_component[jump_mask] = jump_sizes[jump_mask]
simulated_log_returns = drift + diffusion + jump_component
simulated_prices = current_price * np.exp(simulated_log_returns)
# 6. حساب المخرجات والتوزيع
mean_price = np.mean(simulated_prices)
median_price = np.median(simulated_prices)
percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
pi_95 = [percentiles[0], percentiles[-1]]
pi_90 = [percentiles[1], percentiles[-2]]
pi_50 = [percentiles[2], percentiles[4]]
VaR_95_price = percentiles[1]
VaR_95_value = current_price - VaR_95_price
losses_beyond_var = simulated_prices[simulated_prices <= VaR_95_price]
CVR_95_price = np.mean(losses_beyond_var) if len(losses_beyond_var) > 0 else VaR_95_price
CVaR_95_value = current_price - CVR_95_price
target_price = current_price * (1 + target_profit_percent)
probability_of_gain = np.mean(simulated_prices >= target_price)
self.simulation_results = {
'simulation_model': 'Phase2_GARCH_LGBM',
'num_simulations': num_simulations,
'current_price': current_price,
'forecasted_drift_lgbm': forecasted_mean_return,
'forecasted_vol_garch': forecasted_std_return,
'distribution_summary': {'mean_price': mean_price, 'median_price': median_price},
'prediction_interval_50': pi_50,
'prediction_interval_90': pi_90,
'prediction_interval_95': pi_95,
'risk_metrics': {
'VaR_95_price': VaR_95_price,
'VaR_95_value': VaR_95_value,
'CVaR_95_price': CVR_95_price,
'CVaR_95_value': CVaR_95_value,
},
'probability_of_gain': probability_of_gain,
'raw_simulated_prices': simulated_prices[:100]
}
return _sanitize_results_for_json(self.simulation_results)
except Exception as e:
print(f"❌ خطأ فادح في محاكاة مونت كارلو المتقدمة (GARCH/LGBM): {e}")
traceback.print_exc()
self.simulation_results = {'error': f'Advanced MC Error: {str(e)}'}
# العودة إلى المرحلة 1 في حالة الفشل الفادح
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
def _calculate_trend_adjustment(self, closes):
"""(غير مستخدمة حالياً)"""
try:
if len(closes) < 10: return 1.0
recent_trend = (closes[-1] - closes[-10]) / closes[-10]
if recent_trend > 0.02: return 1.2
elif recent_trend > 0.01: return 1.1
elif recent_trend < -0.02: return 0.8
elif recent_trend < -0.01: return 0.9
else: return 1.0
except Exception: return 1.0
print("✅ ML Module: Advanced Monte Carlo Analyzer loaded (V10.0 - Simple Sim Added)") |