File size: 22,915 Bytes
a358999
0f77fc8
 
ba9be46
0f77fc8
 
f01594d
 
 
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
a1e2a1a
 
 
 
 
 
 
f01594d
 
 
 
 
 
 
 
 
 
 
0f77fc8
 
 
a01528e
 
0f77fc8
 
 
 
f01594d
 
 
 
 
 
a358999
 
6eeff1d
f01594d
 
a358999
 
6eeff1d
f01594d
 
0f77fc8
 
 
 
 
a1e2a1a
0f77fc8
f01594d
0f77fc8
f01594d
 
0f77fc8
f01594d
 
 
0f77fc8
 
 
f01594d
 
0f77fc8
f01594d
 
 
 
 
 
0f77fc8
 
 
a01528e
f01594d
0f77fc8
f01594d
 
0f77fc8
 
 
f01594d
0f77fc8
 
f01594d
 
 
 
0f77fc8
f01594d
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
005898f
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e3ab6
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fefc94
 
0f77fc8
 
 
5cd7cf9
0f77fc8
005898f
0f77fc8
f01594d
005898f
0f77fc8
 
 
 
 
 
36da941
0f77fc8
005898f
a01528e
0f77fc8
 
 
 
 
 
a1e2a1a
0f77fc8
 
 
a01528e
0f77fc8
 
 
 
 
 
 
5fefc94
0f77fc8
 
 
a1e2a1a
 
0f77fc8
 
a1e2a1a
 
0f77fc8
69e3ab6
0f77fc8
 
 
 
49f8f71
611eb11
0f77fc8
 
005898f
0f77fc8
f01594d
a01528e
0f77fc8
 
 
 
 
 
 
 
a01528e
3bf4b49
0f77fc8
 
 
 
 
 
 
 
 
 
 
a358999
0f77fc8
a358999
0f77fc8
 
 
5fefc94
0f77fc8
a358999
0f77fc8
 
7d92c27
0f77fc8
 
f01594d
 
7d92c27
0f77fc8
 
 
 
69e3ab6
0f77fc8
 
 
 
 
 
 
 
 
 
 
5fefc94
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
a358999
 
 
 
 
0f77fc8
6eeff1d
0f77fc8
a358999
 
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd8123
611eb11
a358999
 
f01594d
 
 
a358999
 
f01594d
 
 
a358999
f01594d
 
 
 
0f77fc8
f01594d
a358999
 
 
f01594d
 
 
0f77fc8
 
f01594d
0f77fc8
 
 
 
 
f01594d
0f77fc8
a358999
0f77fc8
f01594d
 
 
005898f
49f8f71
0f77fc8
 
 
 
6eeff1d
0f77fc8
6eeff1d
0f77fc8
5fefc94
0f77fc8
951841f
0f77fc8
 
 
 
 
 
 
 
 
 
 
 
 
7d92c27
0f77fc8
 
 
7d92c27
0f77fc8
 
 
 
a01528e
0f77fc8
69e3ab6
0f77fc8
 
 
 
 
 
a01528e
0f77fc8
 
 
 
 
 
 
 
 
 
3cd8123
0f77fc8
 
6eeff1d
0f77fc8
 
 
f01594d
 
 
 
 
 
 
 
 
 
 
 
0f77fc8
f01594d
 
 
 
 
 
 
0f77fc8
 
f01594d
0f77fc8
 
 
 
 
f01594d
0f77fc8
 
f01594d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# LLM.py (V19.5 - Remove Bias Scores from Prompt)
import os, traceback, json, time, re
import httpx
from datetime import datetime
from typing import List, Dict, Any, Optional

# (استخدام مكتبة OpenAI الرسمية بدلاً من httpx)
from openai import AsyncOpenAI, RateLimitError, APIError

try:
    from r2 import R2Service
    from learning_hub.hub_manager import LearningHubManager # (استيراد العقل)
except ImportError:
    print("❌ [LLMService] فشل استيراد R2Service أو LearningHubManager")
    R2Service = None
    LearningHubManager = None

# (V8.1) استيراد NewsFetcher
try:
    from sentiment_news import NewsFetcher
except ImportError:
    NewsFetcher = None

# (استيراد VADER هنا أيضاً للـ type hinting)
try:
    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ImportError:
    SentimentIntensityAnalyzer = None


# (تحديث الإعدادات الافتراضية لتطابق NVIDIA)
LLM_API_URL = os.getenv("LLM_API_URL", "https://integrate.api.nvidia.com/v1")
LLM_API_KEY = os.getenv("LLM_API_KEY") # (هذا هو المفتاح الذي سيتم استخدامه)
LLM_MODEL = os.getenv("LLM_MODEL", "nvidia/llama-3.1-nemotron-ultra-253b-v1")

# (البارامترات المحددة من طرفك)
LLM_TEMPERATURE = 0.2
LLM_TOP_P = 0.7
LLM_MAX_TOKENS = 16384
LLM_FREQUENCY_PENALTY = 0.8
LLM_PRESENCE_PENALTY = 0.5

# إعدادات العميل
CLIENT_TIMEOUT = 300.0 

class LLMService:
    def __init__(self):
        if not LLM_API_KEY:
            raise ValueError("❌ [LLMService] متغير بيئة LLM_API_KEY غير موجود!")
        
        try:
            self.client = AsyncOpenAI(
                base_url=LLM_API_URL,
                api_key=LLM_API_KEY,
                timeout=CLIENT_TIMEOUT
            )
            # 🔴 --- START OF CHANGE (V19.5) --- 🔴
            print(f"✅ [LLMService V19.5] مهيأ. النموذج: {LLM_MODEL}")
            # 🔴 --- END OF CHANGE --- 🔴
            print(f"   -> Endpoint: {LLM_API_URL}")
        except Exception as e:
            # 🔴 --- START OF CHANGE (V19.5) --- 🔴
            print(f"❌ [LLMService V19.5] فشل تهيئة AsyncOpenAI: {e}")
            # 🔴 --- END OF CHANGE --- 🔴
            traceback.print_exc()
            raise
        
        # --- (الربط بالخدمات الأخرى) ---
        self.r2_service: Optional[R2Service] = None
        self.learning_hub: Optional[LearningHubManager] = None
        self.news_fetcher: Optional[NewsFetcher] = None
        self.vader_analyzer: Optional[SentimentIntensityAnalyzer] = None

    async def _call_llm(self, prompt: str) -> Optional[str]:
        """
        (محدث V19.2)
        إجراء استدعاء API للنموذج الضخم (يستخدم الآن "detailed thinking on" كـ system prompt).
        """
        
        system_prompt = "detailed thinking on"

        payload = {
            "model": LLM_MODEL,
            "messages": [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": prompt} # (prompt يحتوي الآن على تعليمات JSON)
            ],
            "temperature": LLM_TEMPERATURE,
            "top_p": LLM_TOP_P,
            "max_tokens": LLM_MAX_TOKENS,
            "frequency_penalty": LLM_FREQUENCY_PENALTY,
            "presence_penalty": LLM_PRESENCE_PENALTY,
            "stream": False, # (يجب أن تكون False للحصول على JSON)
            "response_format": {"type": "json_object"}
        }
        
        try:
            response = await self.client.chat.completions.create(**payload)
            
            if response.choices and len(response.choices) > 0:
                content = response.choices[0].message.content
                if content:
                    return content.strip()
            
            print(f"❌ [LLMService] استجابة API غير متوقعة: {response.model_dump_json()}")
            return None
            
        except RateLimitError as e:
            print(f"❌ [LLMService] خطأ Rate Limit من NVIDIA API: {e}")
        except APIError as e:
            print(f"❌ [LLMService] خطأ API من NVIDIA API: {e}")
        except json.JSONDecodeError:
            print(f"❌ [LLMService] فشل في تحليل استجابة JSON.")
        except Exception as e:
            print(f"❌ [LLMService] خطأ غير متوقع في _call_llm: {e}")
            traceback.print_exc()
            
        return None

    def _parse_llm_response_enhanced(self, 
                                     response_text: str, 
                                     fallback_strategy: str = "decision", 
                                     symbol: str = "N/A") -> Optional[Dict[str, Any]]:
        """
        (محدث V8) محلل JSON ذكي ومتسامح مع الأخطاء.
        """
        if not response_text:
            print(f"   ⚠️ [LLMParser] الاستجابة فارغة لـ {symbol}.")
            return self._get_fallback_response(fallback_strategy, "Empty response")

        # 1. محاولة تحليل JSON مباشرة (لأننا طلبنا response_format=json_object)
        try:
            return json.loads(response_text)
        except json.JSONDecodeError:
            print(f"   ⚠️ [LLMParser] فشل تحليل JSON المباشر لـ {symbol}. محاولة استخراج JSON...")
            pass # (الانتقال إلى المحاولة 2)

        # 2. محاولة استخراج JSON من داخل نص (Fallback 1)
        try:
            # (البحث عن أول { وآخر })
            json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
            if json_match:
                json_string = json_match.group(0)
                return json.loads(json_string)
            else:
                print(f"   ⚠️ [LLMParser] لم يتم العثور على JSON مطابق لـ {symbol}.")
                raise json.JSONDecodeError("No JSON object found in text", response_text, 0)
        except json.JSONDecodeError as e:
            print(f"   ❌ [LLMParser] فشل الاستخراج النهائي لـ {symbol}. نص الاستجابة: {response_text[:200]}...")
            return self._get_fallback_response(fallback_strategy, f"Final JSON parse fail: {e}")
        except Exception as e:
            print(f"   ❌ [LLMParser] خطأ غير متوقع في المحلل لـ {symbol}: {e}")
            return self._get_fallback_response(fallback_strategy, f"Unexpected parser error: {e}")

    def _get_fallback_response(self, strategy: str, reason: str) -> Optional[Dict[str, Any]]:
        """
        (محدث V8) إرجاع استجابة آمنة عند فشل النموذج الضخم.
        """
        print(f"   🚨 [LLMService] تفعيل الاستجابة الاحتياطية (Fallback) لاستراتيجية '{strategy}' (السبب: {reason})")
        
        if strategy == "decision":
            # (القرار الآمن: لا تتداول)
            return {
                "action": "NO_DECISION",
                "strategy_to_watch": "GENERIC",
                "confidence_level": 0,
                "reasoning": f"LLM analysis failed: {reason}",
                "exit_profile": "Standard"
            }
        elif strategy == "reanalysis":
             # (القرار الآمن: استمر في الصفقة الحالية)
            return {
                "action": "HOLD",
                "strategy": "MAINTAIN_CURRENT",
                "reasoning": f"LLM re-analysis failed: {reason}. Maintaining current trade strategy."
            }
        elif strategy == "reflection":
            # (القرار الآمن: لا تقم بإنشاء قاعدة تعلم)
            return None # (سيمنع Reflector من إنشاء دلتا)
            
        elif strategy == "distillation":
             # (القرار الآمن: لا تقم بإنشاء قواعد مقطرة)
            return None # (سيمنع Curator من المتابعة)
            
        return None # (Fallback عام)

    async def get_trading_decision(self, candidate_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
        """
        (محدث V8.1)
        يستدعي النموذج الضخم لاتخاذ قرار "WATCH" استراتيجي (Explorer Brain).
        """
        symbol = candidate_data.get('symbol', 'UNKNOWN')
        try:
            # 1. (العقل) جلب القواعد (Deltas) من محور التعلم
            learning_context_prompt = "Playbook: No learning context available."
            if self.learning_hub:
                learning_context_prompt = await self.learning_hub.get_active_context_for_llm(
                    domain="general", 
                    query=f"{symbol} strategy decision"
                )
            
            # 2. إنشاء الـ Prompt (باللغة الإنجليزية)
            prompt = self._create_trading_prompt(candidate_data, learning_context_prompt)
            
            if self.r2_service:
                await self.r2_service.save_llm_prompts_async(symbol, "trading_decision", prompt, candidate_data)

            # 3. استدعاء النموذج الضخم (LLM)
            response_text = await self._call_llm(prompt)

            # 4. تحليل الاستجابة (باستخدام المحلل الذكي)
            decision_json = self._parse_llm_response_enhanced(
                response_text, 
                fallback_strategy="decision", 
                symbol=symbol
            )
            
            return decision_json

        except Exception as e:
            print(f"❌ [LLMService] فشل فادح في get_trading_decision لـ {symbol}: {e}")
            traceback.print_exc()
            return self._get_fallback_response("decision", str(e)) # (إرجاع قرار آمن)

    async def re_analyze_trade_async(self, trade_data: Dict[str, Any], current_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
        """
        (محدث V19.3)
        يستدعي النموذج الضخم لإعادة تحليل صفقة مفتوحة (Reflector Brain).
        """
        symbol = trade_data.get('symbol', 'UNKNOWN')
        try:
            # 1. (العقل) جلب القواعد (Deltas) من محور التعلم
            learning_context_prompt = "Playbook: No learning context available."
            if self.learning_hub:
                learning_context_prompt = await self.learning_hub.get_active_context_for_llm(
                    domain="strategy", 
                    query=f"{symbol} re-analysis {trade_data.get('strategy', 'GENERIC')}"
                )

            # 2. (V8.1) جلب أحدث الأخبار (باستخدام NewsFetcher المخصص)
            latest_news_text = "News data unavailable for re-analysis."
            latest_news_score = 0.0
            
            # (استخدام self.vader_analyzer الذي تم حقنه)
            if self.news_fetcher:
                latest_news_text = await self.news_fetcher.get_news_for_symbol(symbol)
                if self.vader_analyzer and latest_news_text: # (التحقق من المحلل المُمرر)
                     vader_scores = self.vader_analyzer.polarity_scores(latest_news_text)
                     latest_news_score = vader_scores.get('compound', 0.0)
            
            current_data['latest_news_text'] = latest_news_text
            current_data['latest_news_score'] = latest_news_score

            # 3. إنشاء الـ Prompt (باللغة الإنجليزية)
            prompt = await self._create_reanalysis_prompt(trade_data, current_data, learning_context_prompt)
            
            if self.r2_service:
                 await self.r2_service.save_llm_prompts_async(symbol, "trade_reanalysis", prompt, current_data)

            # 4. استدعاء النموذج الضخم (LLM)
            response_text = await self._call_llm(prompt)

            # 5. تحليل الاستجابة (باستخدام المحلل الذكي)
            decision_json = self._parse_llm_response_enhanced(
                response_text, 
                fallback_strategy="reanalysis", 
                symbol=symbol
            )
            
            return decision_json

        except Exception as e:
            print(f"❌ [LLMService] فشل فادح في re_analyze_trade_async لـ {symbol}: {e}")
            traceback.print_exc()
            return self._get_fallback_response("reanalysis", str(e)) # (إرجاع قرار آمن)
            
    # --- (دوال إنشاء الـ Prompts) ---
    # (ملاحظة: هذه الدوال يجب أن تكون دائماً باللغة الإنجليزية)

    def _create_trading_prompt(self, 
                               candidate_data: Dict[str, Any], 
                               learning_context: str) -> str:
        """
        (معدل V19.5)
        إنشاء الـ Prompt (باللغة الإنجليزية) لاتخاذ قرار التداول الأولي (Explorer).
        (تمت إزالة الدرجات المسبقة لتقليل الانحياز)
        """
        
        symbol = candidate_data.get('symbol', 'N/A')
        
        # --- 1. استخراج بيانات ML (الطبقة 1) ---
        # (تمت إزالة l1_score و l1_reasons عمداً)
        pattern_data = candidate_data.get('pattern_analysis', {})
        mc_data = candidate_data.get('monte_carlo_distribution', {})
        
        # --- 2. استخراج بيانات المشاعر والأخبار (الطبقة 1) ---
        news_text = candidate_data.get('news_text', 'No news text provided.')
        news_score_raw = candidate_data.get('news_score_raw', 0.0)
        statistical_news_pnl = candidate_data.get('statistical_news_pnl', 0.0)
        
        # --- 3. استخراج بيانات الحيتان (الطبقة 1) ---
        whale_data = candidate_data.get('whale_data', {})
        whale_summary = whale_data.get('llm_friendly_summary', {})
        exchange_flows = whale_data.get('exchange_flows', {})
        
        whale_signal = whale_summary.get('recommended_action', 'HOLD')
        whale_confidence = whale_summary.get('confidence', 0.3)
        whale_reason = whale_summary.get('whale_activity_summary', 'No whale data.')
        net_flow_usd = exchange_flows.get('net_flow_usd', 0.0)

        # (البيانات طويلة المدى - من تحليل 24 ساعة الجديد)
        accumulation_data_24h = whale_data.get('accumulation_analysis_24h', {})
        net_flow_24h_usd = accumulation_data_24h.get('net_flow_usd', 0.0)
        total_inflow_24h_usd = accumulation_data_24h.get('to_exchanges_usd', 0.0)
        total_outflow_24h_usd = accumulation_data_24h.get('from_exchanges_usd', 0.0)
        relative_net_flow_24h_percent = accumulation_data_24h.get('relative_net_flow_percent', 0.0)

        # --- 4. استخراج بيانات السوق (الطبقة 0) ---
        market_context = candidate_data.get('sentiment_data', {})
        market_trend = market_context.get('market_trend', 'UNKNOWN')
        btc_sentiment = market_context.get('btc_sentiment', 'UNKNOWN')
        
        # --- 5. بناء أقسام الـ Prompt (الإنجليزية) ---
        
        playbook_prompt = f"""
--- START OF LEARNING PLAYBOOK ---
{learning_context}
--- END OF PLAYBOOK ---
"""
        
        # 🔴 --- START OF CHANGE (V19.5) --- 🔴
        # (تمت إزالة درجة l1_score و l1_reasons من هنا)
        technical_summary_prompt = f"""
1.  **Technical Analysis:**
    * Chart Pattern: {pattern_data.get('pattern_detected', 'None')} (Conf: {pattern_data.get('pattern_confidence', 0):.2f})
    * Monte Carlo (1h): {mc_data.get('probability_of_gain', 0) * 100:.1f}% chance of profit (Expected: {mc_data.get('expected_return_pct', 0):.2f}%)
"""
        # 🔴 --- END OF CHANGE --- 🔴

        news_prompt = f"""
2.  **News & Sentiment Analysis:**
    * Market Trend: {market_trend} (BTC: {btc_sentiment})
    * VADER (Raw): {news_score_raw:.3f}
    * Statistical PnL (Learned): {statistical_news_pnl:+.2f}%
    * News Text: {news_text[:300]}...
"""
        whale_activity_prompt = f"""
3.  **Whale Activity (Real-time Flow - Optimized Window):**
    * Signal: {whale_signal} (Confidence: {whale_confidence:.2f})
    * Reason: {whale_reason}
    * Net Flow (to/from Exchanges): ${net_flow_usd:,.2f}

4.  **Whale Activity (24h Accumulation):**
    * 24h Net Flow (Accumulation): ${net_flow_24h_usd:,.2f}
    * 24h Total Deposits: ${total_inflow_24h_usd:,.2f}
    * 24h Total Withdrawals: ${total_outflow_24h_usd:,.2f}
    * Relative 24h Net Flow (vs Daily Volume): {relative_net_flow_24h_percent:+.2f}%
"""
        
        # 🔴 --- START OF CHANGE (V19.5) --- 🔴
        # (تم تحديث التعليمات ليعكس تحليل البيانات "الخام" بدلاً من الدرجات)
        task_prompt = f"""
CONTEXT:
You are an expert AI trading analyst (Explorer Brain). 
Analyze the following raw technical, news, and whale data for {symbol}. You must make a decision based *only* on the data provided, without any pre-calculated scores.
Decide if this combination of signals presents a high-potential opportunity to 'WATCH'.
{playbook_prompt}

--- START OF CANDIDATE DATA ---
{technical_summary_prompt}
{news_prompt}
{whale_activity_prompt}
--- END OF CANDIDATE DATA ---

TASK:
1.  **Internal Thinking (Private):** Perform a step-by-step analysis (as triggered by the system prompt).
    * Synthesize all data points (Chart Pattern, Monte Carlo, News, Whale Flow, 24h Accumulation).
    * Are the signals aligned? (e.g., Bullish Pattern + High MC Probability + Whale Accumulation = Strong).
    * Are there conflicts? (e.g., Bullish Pattern but high 24h Deposits = Risky).
    * Consult the "Playbook" for learned rules.
2.  **Final Decision:** Based on your internal thinking, decide the final action.
3.  **Output Constraint:** Provide your final answer ONLY in the requested JSON object format, with no introductory text, markdown formatting, or explanations.

OUTPUT (JSON Object ONLY):
{{
  "action": "WATCH" or "NO_DECISION",
  "strategy_to_watch": "STRATEGY_NAME",
  "confidence_level": 0.0_to_1.0,
  "reasoning": "Brief justification (max 40 words) synthesizing all data points.",
  "exit_profile": "Aggressive" or "Standard" or "Patient"
}}
"""
        # 🔴 --- END OF CHANGE --- 🔴
        
        # (نرسل فقط task_prompt لأنه يحتوي الآن على كل شيء)
        return task_prompt


    async def _create_reanalysis_prompt(self, 
                                    trade_data: Dict[str, Any], 
                                    current_data: Dict[str, Any], 
                                    learning_context: str) -> str:
        """
        (معدل V19.4)
        إنشاء الـ Prompt (باللغة الإنجليزية) لإعادة تحليل صفقة مفتوحة (Reflector Brain).
        (تم إصلاح تنسيق مونت كارلو)
        """
        
        symbol = trade_data.get('symbol', 'N/A')
        
        # --- 1. بيانات الصفقة الأصلية (القديمة) ---
        original_strategy = trade_data.get('strategy', 'N/A')
        original_reasoning = trade_data.get('decision_data', {}).get('reasoning', 'N/A')
        entry_price = trade_data.get('entry_price', 0)
        current_pnl = trade_data.get('pnl_percent', 0)
        current_sl = trade_data.get('stop_loss', 0)
        current_tp = trade_data.get('take_profit', 0)
        
        # --- 2. البيانات الفنية المحدثة (الحالية) ---
        current_price = current_data.get('current_price', 0)
        mc_data = current_data.get('monte_carlo_distribution', {})
        mc_prob = mc_data.get('probability_of_gain', 0)
        mc_expected_return = mc_data.get('expected_return_pct', 0)
        
        # --- 3. (V8.1) بيانات الأخبار المحدثة (الحالية) ---
        latest_news_text = current_data.get('latest_news_text', 'No news.')
        latest_news_score = current_data.get('latest_news_score', 0.0)

        # --- 4. (العقل) بيانات التعلم الإحصائي ---
        statistical_feedback = ""
        if self.learning_hub:
            statistical_feedback = await self.learning_hub.get_statistical_feedback_for_llm(original_strategy)

        # --- 5. بناء أقسام الـ Prompt (الإنجليزية) ---
        
        playbook_prompt = f"""
--- START OF LEARNING PLAYBOOK ---
{learning_context}
{statistical_feedback}
--- END OF PLAYBOOK ---
"""

        trade_status_prompt = f"""
1.  **Open Trade Status ({symbol}):**
    * Current PnL: {current_pnl:+.2f}%
    * Original Strategy: {original_strategy}
    * Original Reasoning: {original_reasoning}
    * Entry Price: {entry_price}
    * Current Price: {current_price}
    * Current StopLoss: {current_sl}
    * Current TakeProfit: {current_tp}
"""

        current_analysis_prompt = f"""
2.  **Current Real-time Analysis:**
    * Monte Carlo (1h): {mc_prob * 100:.1f}% chance of profit (Expected: {mc_expected_return:.2f}%)
    * Latest News (VADER: {latest_news_score:.3f}): {latest_news_text[:300]}...
"""
        
        # (دمج جميع التعليمات في رسالة الـ user)
        task_prompt = f"""
CONTEXT:
You are an expert AI trading analyst (Reflector Brain). 
An open trade for {symbol} has triggered a mandatory re-analysis. Analyze the new data and decide the next action.
{playbook_prompt}

--- START OF TRADE DATA ---
{trade_status_prompt}
{current_analysis_prompt}
--- END OF TRADE DATA ---

TASK:
1.  **Internal Thinking (Private):** Perform a step-by-step analysis (as triggered by the system prompt).
    * Compare the "Open Trade Status" with the "Current Real-time Analysis".
    * Has the situation improved or deteriorated? (e.g., PnL is good, but new Monte Carlo is negative).
    * Are there new critical news?
    * Consult the "Playbook" for learned rules and statistical feedback.
2.  **Final Decision:** Based on your internal thinking, decide the best course of action (HOLD, UPDATE_TRADE, CLOSE_TRADE).
3.  **Output Constraint:** Provide your final answer ONLY in the requested JSON object format, with no introductory text, markdown formatting, or explanations.

OUTPUT (JSON Object ONLY):
{{
  "action": "HOLD" or "UPDATE_TRADE" or "CLOSE_TRADE",
  "strategy": "MAINTAIN_CURRENT" or "ADAPTIVE_EXIT" or "IMMEDIATE_EXIT",
  "reasoning": "Brief justification (max 40 words) for the decision.",
  "new_stop_loss": (float or null, required if action is 'UPDATE_TRADE'),
  "new_take_profit": (float or null, required if action is 'UPDATE_TRADE')
}}
"""
        
        return task_prompt