File size: 11,655 Bytes
6512921 d2bde3f 6512921 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 aef43eb 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f aef43eb 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f aef43eb d2bde3f 505cee1 d2bde3f aef43eb d2bde3f aef43eb d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f aef43eb d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f 505cee1 d2bde3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# learning_hub/statistical_analyzer.py
# (V12.3 Full - Adaptive Hybrid Weights + VADER Learning)
import json
import asyncio
import traceback
from datetime import datetime
from typing import Dict, Any, List
import numpy as np
# دوال مساعدة
def normalize_weights(weights_dict):
total = sum(weights_dict.values())
if total > 0:
for key in weights_dict:
weights_dict[key] /= total
return weights_dict
def should_update_weights(history_length):
return history_length % 5 == 0
class StatisticalAnalyzer:
def __init__(self, r2_service: Any, data_manager: Any):
self.r2_service = r2_service
self.data_manager = data_manager
# حالة التعلم
self.weights = {}
self.performance_history = []
self.strategy_effectiveness = {}
self.exit_profile_effectiveness = {}
self.market_patterns = {}
self.vader_bin_effectiveness = {} # لتعلم الأخبار
# 🔴 جديد: تتبع أداء مكونات النظام الهجين
self.component_performance = {
"titan": {"correct_calls": 0, "total_calls": 0, "accuracy": 0.5},
"patterns": {"correct_calls": 0, "total_calls": 0, "accuracy": 0.5},
"monte_carlo": {"correct_calls": 0, "total_calls": 0, "accuracy": 0.5}
}
self.initialized = False
self.lock = asyncio.Lock()
print("✅ Learning Hub: Statistical Analyzer (Adaptive Hybrid) loaded")
async def initialize(self):
async with self.lock:
if self.initialized: return
print("🔄 [StatsAnalyzer] تهيئة التعلم الإحصائي المتكيف...")
try:
await self.load_weights_from_r2()
await self.load_performance_history()
await self.load_exit_profile_effectiveness()
await self.load_vader_effectiveness()
if not self.weights:
await self.initialize_default_weights()
self.initialized = True
print("✅ [StatsAnalyzer] جاهز.")
except Exception as e:
print(f"❌ [StatsAnalyzer] فشل التهيئة: {e}")
await self.initialize_default_weights()
self.initialized = True
async def initialize_default_weights(self):
"""إعادة تعيين الأوزان للافتراضيات"""
self.weights = {
# 🔴 الأوزان الهجينة الديناميكية (الافتراضية)
"hybrid_weights": {
"titan": 0.50,
"patterns": 0.40,
"monte_carlo": 0.10
},
# أوزان الاستراتيجيات القديمة (للمرجعية)
"strategy_weights": {
"trend_following": 0.18, "mean_reversion": 0.15, "breakout_momentum": 0.22,
"volume_spike": 0.12, "whale_tracking": 0.15, "pattern_recognition": 0.10,
"hybrid_ai": 0.08
},
"entry_trigger_threshold": 0.90 # عتبة الدخول الافتراضية
}
# إعادة تعيين سجلات الأداء
self.strategy_effectiveness = {}
self.vader_bin_effectiveness = {k: {"total_trades": 0, "total_pnl_percent": 0}
for k in ["Strong_Positive", "Positive", "Neutral", "Negative", "Strong_Negative"]}
self.component_performance = {k: {"correct_calls": 0, "total_calls": 0, "accuracy": 0.5}
for k in ["titan", "patterns", "monte_carlo"]}
async def update_statistics(self, trade_object: Dict[str, Any], close_reason: str):
"""تحديث الإحصائيات وتكييف الأوزان الهجينة"""
if not self.initialized: await self.initialize()
try:
strategy = trade_object.get('strategy', 'unknown')
pnl_percent = trade_object.get('pnl_percent', 0)
is_success = pnl_percent > 0.1
decision_data = trade_object.get('decision_data', {})
vader_score = decision_data.get('news_score', 0.0)
vader_bin = self._get_vader_bin(vader_score)
# 1. تحديث السجل العام
self.performance_history.append({
"timestamp": datetime.now().isoformat(),
"symbol": trade_object.get('symbol'),
"pnl_percent": pnl_percent,
"strategy": strategy,
"vader_bin": vader_bin
})
# 2. تحديث أداء VADER
if vader_bin not in self.vader_bin_effectiveness:
self.vader_bin_effectiveness[vader_bin] = {"total_trades": 0, "total_pnl_percent": 0}
self.vader_bin_effectiveness[vader_bin]["total_trades"] += 1
self.vader_bin_effectiveness[vader_bin]["total_pnl_percent"] += pnl_percent
# 🔴 3. تحديث أداء مكونات النظام الهجين (الجديد)
components = decision_data.get('components', {})
if components:
# هل كان تيتان على حق؟ (نعتبر > 0.6 توقعاً للصعود)
titan_bullish = components.get('titan_score', 0.5) >= 0.6
if (titan_bullish and is_success) or (not titan_bullish and not is_success):
self.component_performance["titan"]["correct_calls"] += 1
self.component_performance["titan"]["total_calls"] += 1
# هل كانت الأنماط على حق؟
pat_bullish = components.get('patterns_score', 0.5) >= 0.6
if (pat_bullish and is_success) or (not pat_bullish and not is_success):
self.component_performance["patterns"]["correct_calls"] += 1
self.component_performance["patterns"]["total_calls"] += 1
# هل كان مونت كارلو على حق؟
mc_bullish = components.get('mc_score', 0.5) >= 0.6
if (mc_bullish and is_success) or (not mc_bullish and not is_success):
self.component_performance["monte_carlo"]["correct_calls"] += 1
self.component_performance["monte_carlo"]["total_calls"] += 1
# 4. تكييف الأوزان دورياً
if should_update_weights(len(self.performance_history)):
await self.adapt_hybrid_weights()
await self.save_weights_to_r2()
await self.save_performance_history()
await self.save_vader_effectiveness()
print(f"✅ [StatsAnalyzer] Stats updated for {strategy}. Hybrid weights adapted.")
except Exception as e:
print(f"❌ [StatsAnalyzer] Update failed: {e}")
traceback.print_exc()
async def adapt_hybrid_weights(self):
"""تعديل الأوزان الهجينة (0.5/0.4/0.1) بناءً على الدقة الحقيقية"""
print("⚖️ [StatsAnalyzer] تكييف الأوزان الهجينة...")
try:
# حساب الدقة الحالية لكل مكون
for data in self.component_performance.values():
if data["total_calls"] > 5: # نحتاج عينة صغيرة على الأقل
data["accuracy"] = data["correct_calls"] / data["total_calls"]
# حساب الأوزان الجديدة النسبية (مع حد أدنى 0.05 لعدم إلغاء أي مكون تماماً)
t_acc = max(self.component_performance["titan"]["accuracy"], 0.05)
p_acc = max(self.component_performance["patterns"]["accuracy"], 0.05)
m_acc = max(self.component_performance["monte_carlo"]["accuracy"], 0.05)
total_acc = t_acc + p_acc + m_acc
new_weights = {
"titan": t_acc / total_acc,
"patterns": p_acc / total_acc,
"monte_carlo": m_acc / total_acc
}
# تطبيق التغيير بنعومة (80% قديم + 20% جديد) لتجنب التقلب الشديد
current = self.weights.get("hybrid_weights", {"titan":0.5, "patterns":0.4, "monte_carlo":0.1})
final_weights = {k: (current.get(k,0.33) * 0.8) + (new_weights[k] * 0.2) for k in new_weights}
self.weights["hybrid_weights"] = normalize_weights(final_weights)
print(f"✅ [StatsAnalyzer] New Hybrid Weights: {self.weights['hybrid_weights']}")
except Exception as e:
print(f"❌ [StatsAnalyzer] Weight adaptation failed: {e}")
# --- دوال مساعدة وتحميل/حفظ (R2) ---
def _get_vader_bin(self, score):
if score > 0.5: return "Strong_Positive"
if score > 0.05: return "Positive"
if score < -0.5: return "Strong_Negative"
if score < -0.05: return "Negative"
return "Neutral"
async def load_weights_from_r2(self):
try:
resp = self.r2_service.s3_client.get_object(Bucket="trading", Key="learning_statistical_weights.json")
data = json.loads(resp['Body'].read())
self.weights = data.get("weights", {})
self.component_performance = data.get("component_performance", self.component_performance)
except: pass # استخدام الافتراضيات
async def save_weights_to_r2(self):
try:
data = {"weights": self.weights, "component_performance": self.component_performance, "last_updated": datetime.now().isoformat()}
self.r2_service.s3_client.put_object(Bucket="trading", Key="learning_statistical_weights.json", Body=json.dumps(data).encode('utf-8'))
except Exception as e: print(f"❌ Failed to save weights: {e}")
async def load_performance_history(self):
try:
resp = self.r2_service.s3_client.get_object(Bucket="trading", Key="learning_performance_history.json")
self.performance_history = json.loads(resp['Body'].read()).get("history", [])
except: self.performance_history = []
async def save_performance_history(self):
try:
self.r2_service.s3_client.put_object(Bucket="trading", Key="learning_performance_history.json", Body=json.dumps({"history": self.performance_history[-1000:]}).encode('utf-8'))
except: pass
async def load_vader_effectiveness(self):
try:
resp = self.r2_service.s3_client.get_object(Bucket="trading", Key="learning_vader_effectiveness.json")
self.vader_bin_effectiveness = json.loads(resp['Body'].read()).get("effectiveness", {})
except: pass
async def save_vader_effectiveness(self):
try:
self.r2_service.s3_client.put_object(Bucket="trading", Key="learning_vader_effectiveness.json", Body=json.dumps({"effectiveness": self.vader_bin_effectiveness}).encode('utf-8'))
except: pass
async def load_exit_profile_effectiveness(self): pass # (تم تبسيطها للتركيز على الجديد)
async def save_exit_profile_effectiveness(self): pass
async def get_statistical_vader_pnl(self, score):
bin_data = self.vader_bin_effectiveness.get(self._get_vader_bin(score))
if bin_data and bin_data["total_trades"] >= 3:
return bin_data["total_pnl_percent"] / bin_data["total_trades"]
return 0.0
async def get_best_exit_profile(self, strategy): return "unknown" # (مبسطة) |