File size: 21,005 Bytes
e173390 079f572 66bf018 079f572 adb387e 3e5d7c8 adb387e 079f572 66bf018 079f572 e173390 66bf018 e173390 66bf018 e173390 66bf018 adb387e 66bf018 adb387e e173390 66bf018 adb387e e173390 66bf018 e173390 66bf018 adb387e e173390 66bf018 e173390 eced413 e173390 eced413 e173390 adb387e e173390 adb387e 66bf018 e173390 eced413 adb387e e173390 66bf018 e173390 66bf018 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 66bf018 eced413 0efffff eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 eced413 079f572 e173390 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# ml_engine/indicators.py (V10.2 - Anti-Fragile FIX)
import pandas as pd
import pandas_ta as ta
import numpy as np
from typing import Dict
try:
from hurst import compute_Hc
HURST_AVAILABLE = True
except ImportError:
print("⚠️ مكتبة 'hurst' غير موجودة. ميزة 'مفتاح النظام' ستكون معطلة.")
print(" -> قم بتثبيتها: pip install hurst")
HURST_AVAILABLE = False
class AdvancedTechnicalAnalyzer:
def __init__(self):
# (هذا الكونفيغ سيبقى للاستخدامات القديمة مثل الحارس 1m)
self.indicators_config = {
'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'],
'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'],
'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'],
'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'],
'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
}
# 🔴 --- START OF UPDATED FUNCTION (V10.2 - Anti-Fragile) --- 🔴
def calculate_v9_smart_features(self, dataframe: pd.DataFrame) -> Dict[str, float]:
"""
(محدث V10.2) - (إصلاح خطأ "الميزات المفقودة" بشكل نهائي)
- استخدام "قالب الميزات" لضمان إرجاع جميع الميزات دائماً.
"""
if dataframe.empty or dataframe is None or len(dataframe) < 100:
return {}
# --- (V10.2) الخطوة 1: تعريف "قالب الميزات" بالقيم الافتراضية ---
# (هذه هي جميع الميزات التي تدرب عليها نموذج V9.8)
features = {
'price_to_ema_50': 0.0, 'price_to_ema_200': 0.0, 'price_to_min_100': 0.0,
'price_to_max_100': 0.0, 'slope_14_50': 0.0, 'adx_slope': 0.0,
'volume_zscore_50': 0.0, 'vwap_gap': 0.0, 'cmf_20': 0.0, 'vroc_12': 0.0,
'obv_slope': 0.0, 'rsi_14': 50.0, 'rsi_mean_10': 50.0, 'rsi_std_10': 0.0,
'mfi_14': 50.0, 'mfi_mean_10': 50.0, 'adx_14': 20.0, 'atr_percent': 0.0,
'vol_of_vol': 0.0, 'atr_normalized_return': 0.0, 'hurst': 0.5,
'ppo_hist': 0.0, 'ppo_line': 0.0
# (ميزات مونت كارلو ستضاف لاحقاً في data_manager)
}
try:
# --- جلب البيانات الأساسية (Series) ---
close = dataframe['close']
high = dataframe['high']
low = dataframe['low']
volume = dataframe['volume']
current_price = close.iloc[-1]
# --- 1. حساب مؤشرات السلسلة الكاملة (Series) ---
rsi_series = ta.rsi(close, length=14)
mfi_series = ta.mfi(high, low, close, volume, length=14)
atr_series = ta.atr(high, low, close, length=14)
adx_data = ta.adx(high, low, close, length=14)
obv_series = ta.obv(close, volume)
# --- 2. ميزات "نسب السعر" (Price Ratios) ---
try:
ema_50 = ta.ema(close, length=50).iloc[-1]
ema_200 = ta.ema(close, length=200).iloc[-1]
if ema_50 and ema_50 > 0: features['price_to_ema_50'] = (current_price / ema_50) - 1
if ema_200 and ema_200 > 0: features['price_to_ema_200'] = (current_price / ema_200) - 1
min_100 = low.tail(100).min(); max_100 = high.tail(100).max()
if min_100 and min_100 > 0: features['price_to_min_100'] = (current_price / min_100) - 1
if max_100 and max_100 > 0: features['price_to_max_100'] = (current_price / max_100) - 1
ema_14 = ta.ema(close, length=14).iloc[-1]
if ema_14 and ema_50: features['slope_14_50'] = (ema_14 - ema_50) / 14
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
# --- 3. ميزات "الميل" (Slope) ---
try:
if adx_data is not None and not adx_data.empty:
adx_series = adx_data['ADX_14']
if adx_series is not None and not adx_series.empty:
adx_ema_5 = ta.ema(adx_series, length=5).iloc[-1]; adx_ema_15 = ta.ema(adx_series, length=15).iloc[-1]
if adx_ema_5 and adx_ema_15: features['adx_slope'] = (adx_ema_5 - adx_ema_15) / 5
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
# --- 4. ميزات "الحجم" (Volume) و "السيولة" ---
try:
vol_ma_50 = volume.tail(50).mean(); vol_std_50 = volume.tail(50).std()
if vol_std_50 and vol_std_50 > 0: features['volume_zscore_50'] = (volume.iloc[-1] - vol_ma_50) / vol_std_50
vwap = ta.vwap(high, low, close, volume).iloc[-1]
if vwap and vwap > 0: features['vwap_gap'] = (current_price - vwap) / vwap
cmf = ta.cmf(high, low, close, volume, length=20)
if cmf is not None and not cmf.empty: features['cmf_20'] = cmf.iloc[-1]
vroc = ta.roc(volume, length=12)
if vroc is not None and not vroc.empty: features['vroc_12'] = vroc.iloc[-1]
if obv_series is not None and not obv_series.empty:
obv_ema_10 = ta.ema(obv_series, length=10).iloc[-1]; obv_ema_30 = ta.ema(obv_series, length=30).iloc[-1]
if obv_ema_10 and obv_ema_30: features['obv_slope'] = (obv_ema_10 - obv_ema_30) / 10
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
# --- 5. ميزات "تجميعية" (Aggregative) ---
try:
if rsi_series is not None and not rsi_series.empty:
features['rsi_14'] = rsi_series.iloc[-1]; features['rsi_mean_10'] = rsi_series.tail(10).mean(); features['rsi_std_10'] = rsi_series.tail(10).std()
if mfi_series is not None and not mfi_series.empty:
features['mfi_14'] = mfi_series.iloc[-1]; features['mfi_mean_10'] = mfi_series.tail(10).mean()
if adx_data is not None and not adx_data.empty:
adx_val = adx_data['ADX_14'].iloc[-1]
if adx_val is not None: features['adx_14'] = adx_val
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
# --- 6. ميزات "التقلب" (Volatility) ---
try:
atr_val = None
if atr_series is not None and not atr_series.empty:
atr_val = atr_series.iloc[-1]
if atr_val and current_price > 0: features['atr_percent'] = (atr_val / current_price) * 100
vol_of_vol_series = ta.atr(atr_series, length=10) # (Vol-of-Vol)
if vol_of_vol_series is not None and not vol_of_vol_series.empty: features['vol_of_vol'] = vol_of_vol_series.iloc[-1]
last_return = close.pct_change().iloc[-1]
if atr_val and atr_val > 0:
features['atr_normalized_return'] = last_return / atr_val
# (لا نحتاج else، القيمة الافتراضية 0.0 موجودة)
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
# --- 7. ميزات النظام (Regime Features) ---
try:
if HURST_AVAILABLE:
hurst_series = close.tail(100).to_numpy()
H, c, data = compute_Hc(hurst_series, kind='price', simplified=True)
features['hurst'] = H
# (لا نحتاج else، القيمة الافتراضية 0.5 موجودة)
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
try:
ppo_data = ta.ppo(close, fast=12, slow=26, signal=9)
if ppo_data is not None and not ppo_data.empty:
features['ppo_hist'] = ppo_data['PPOh_12_26_9'].iloc[-1]
features['ppo_line'] = ppo_data['PPO_12_26_9'].iloc[-1]
except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
except Exception as e:
# (فشل كبير، سنعيد القالب الافتراضي)
# print(f"⚠️ خطأ كارثي في حساب ميزات V9.8: {e}");
pass
# (تنظيف نهائي للتأكد من عدم وجود NaN/Inf)
for key, value in features.items():
if not np.isfinite(value):
features[key] = 0.0 # (إعادة التعيين إلى 0.0 إذا كان الحساب NaN)
return features
# 🔴 --- END OF UPDATED FUNCTION (V10.2) --- 🔴
# -----------------------------------------------------------------
# --- (الدوال القديمة تبقى كما هي للاستخدامات الأخرى مثل Sentry 1m) ---
# -----------------------------------------------------------------
def calculate_all_indicators(self, dataframe, timeframe):
if dataframe.empty or dataframe is None: return {}
indicators = {}
try:
indicators.update(self._calculate_trend_indicators(dataframe))
indicators.update(self._calculate_momentum_indicators(dataframe))
indicators.update(self._calculate_volatility_indicators(dataframe))
indicators.update(self._calculate_volume_indicators(dataframe, timeframe))
indicators.update(self._calculate_cycle_indicators(dataframe))
except Exception as e:
print(f"⚠️ خطأ في حساب المؤشرات لـ {timeframe}: {e}")
return indicators
def _calculate_trend_indicators(self, dataframe):
trend = {};
try:
if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
if len(dataframe) >= 9:
ema_9 = ta.ema(dataframe['close'], length=9);
if ema_9 is not None and not ema_9.empty and not pd.isna(ema_9.iloc[-1]): trend['ema_9'] = float(ema_9.iloc[-1]);
if len(dataframe) >= 21:
ema_21 = ta.ema(dataframe['close'], length=21);
if ema_21 is not None and not ema_21.empty and not pd.isna(ema_21.iloc[-1]): trend['ema_21'] = float(ema_21.iloc[-1]);
if len(dataframe) >= 50:
ema_50 = ta.ema(dataframe['close'], length=50);
if ema_50 is not None and not ema_50.empty and not pd.isna(ema_50.iloc[-1]): trend['ema_50'] = float(ema_50.iloc[-1]);
if len(dataframe) >= 200:
ema_200 = ta.ema(dataframe['close'], length=200);
if ema_200 is not None and not ema_200.empty and not pd.isna(ema_200.iloc[-1]): trend['ema_200'] = float(ema_200.iloc[-1]);
if len(dataframe) >= 26:
try:
ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close']);
if ichimoku is not None and len(ichimoku) > 0:
conversion_line = ichimoku[0].get('ITS_9') if ichimoku[0] is not None else None;
base_line = ichimoku[0].get('IKS_26') if ichimoku[0] is not None else None;
if conversion_line is not None and not conversion_line.empty and not pd.isna(conversion_line.iloc[-1]): trend['ichimoku_conversion'] = float(conversion_line.iloc[-1]);
if base_line is not None and not base_line.empty and not pd.isna(base_line.iloc[-1]): trend['ichimoku_base'] = float(base_line.iloc[-1]);
except Exception as ichimoku_error: pass;
if len(dataframe) >= 14:
try:
adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14);
if adx_result is not None and not adx_result.empty:
adx_value = adx_result.get('ADX_14');
if adx_value is not None and not adx_value.empty and not pd.isna(adx_value.iloc[-1]): trend['adx'] = float(adx_value.iloc[-1]);
except Exception as adx_error: pass;
except Exception as e: pass;
return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)};
def _calculate_momentum_indicators(self, dataframe):
momentum = {};
try:
if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
if len(dataframe) >= 14:
rsi = ta.rsi(dataframe['close'], length=14);
if rsi is not None and not rsi.empty and not pd.isna(rsi.iloc[-1]): momentum['rsi'] = float(rsi.iloc[-1]);
if len(dataframe) >= 26:
macd = ta.macd(dataframe['close']);
if macd is not None and not macd.empty:
macd_hist = macd.get('MACDh_12_26_9');
macd_line = macd.get('MACD_12_26_9');
if macd_hist is not None and not macd_hist.empty and not pd.isna(macd_hist.iloc[-1]): momentum['macd_hist'] = float(macd_hist.iloc[-1]);
if macd_line is not None and not macd_line.empty and not pd.isna(macd_line.iloc[-1]): momentum['macd_line'] = float(macd_line.iloc[-1]);
if len(dataframe) >= 14:
stoch_rsi = ta.stochrsi(dataframe['close'], length=14);
if stoch_rsi is not None and not stoch_rsi.empty:
stoch_k = stoch_rsi.get('STOCHRSIk_14_14_3_3');
if stoch_k is not None and not stoch_k.empty and not pd.isna(stoch_k.iloc[-1]): momentum['stoch_rsi_k'] = float(stoch_k.iloc[-1]);
if len(dataframe) >= 14:
williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14);
if williams is not None and not williams.empty and not pd.isna(williams.iloc[-1]): momentum['williams_r'] = float(williams.iloc[-1]);
except Exception as e: pass;
return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)};
def _calculate_volatility_indicators(self, dataframe):
volatility = {};
try:
if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
if len(dataframe) >= 20:
bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2);
if bollinger_bands is not None and not bollinger_bands.empty:
bb_lower = bollinger_bands.get('BBL_20_2.0'); bb_upper = bollinger_bands.get('BBU_20_2.0'); bb_middle = bollinger_bands.get('BBM_20_2.0');
if bb_lower is not None and not bb_lower.empty and not pd.isna(bb_lower.iloc[-1]): volatility['bb_lower'] = float(bb_lower.iloc[-1]);
if bb_upper is not None and not bb_upper.empty and not pd.isna(bb_upper.iloc[-1]): volatility['bb_upper'] = float(bb_upper.iloc[-1]);
if bb_middle is not None and not bb_middle.empty and not pd.isna(bb_middle.iloc[-1]): volatility['bb_middle'] = float(bb_middle.iloc[-1]);
if len(dataframe) >= 14:
average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14);
if average_true_range is not None and not average_true_range.empty and not pd.isna(average_true_range.iloc[-1]):
atr_value = float(average_true_range.iloc[-1]); volatility['atr'] = atr_value;
current_close = dataframe['close'].iloc[-1] if not dataframe['close'].empty else 0;
if atr_value and current_close > 0: volatility['atr_percent'] = (atr_value / current_close) * 100;
except Exception as e: pass;
return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)};
def _calculate_volume_indicators(self, dataframe, timeframe):
volume = {};
try:
if dataframe is None or dataframe.empty or 'close' not in dataframe.columns or 'volume' not in dataframe.columns: return {};
if len(dataframe) >= 1:
try:
df_vwap = dataframe.copy();
if not isinstance(df_vwap.index, pd.DatetimeIndex):
if 'timestamp' in df_vwap.columns:
df_vwap['timestamp'] = pd.to_datetime(df_vwap['timestamp'], unit='ms'); df_vwap.set_index('timestamp', inplace=True);
elif not df_vwap.index.is_numeric():
df_vwap.index = pd.to_datetime(df_vwap.index, unit='ms');
else:
raise ValueError("DataFrame needs 'timestamp' column or DatetimeIndex");
df_vwap.sort_index(inplace=True);
volume_weighted_average_price = ta.vwap(high=df_vwap['high'], low=df_vwap['low'], close=df_vwap['close'], volume=df_vwap['volume']);
if volume_weighted_average_price is not None and not volume_weighted_average_price.empty and not pd.isna(volume_weighted_average_price.iloc[-1]): volume['vwap'] = float(volume_weighted_average_price.iloc[-1]);
except Exception as vwap_error:
if "VWAP requires an ordered DatetimeIndex" not in str(vwap_error) and "Index" not in str(vwap_error): pass;
if len(dataframe) >= 20:
try:
typical_price = (dataframe['high'] + dataframe['low'] + dataframe['close']) / 3;
vwap_simple = (typical_price * dataframe['volume']).sum() / dataframe['volume'].sum();
if not np.isnan(vwap_simple): volume['vwap'] = float(vwap_simple);
except Exception as simple_vwap_error: pass;
try:
on_balance_volume = ta.obv(dataframe['close'], dataframe['volume']);
if on_balance_volume is not None and not on_balance_volume.empty and not pd.isna(on_balance_volume.iloc[-1]): volume['obv'] = float(on_balance_volume.iloc[-1]);
except Exception as obv_error: pass;
if len(dataframe) >= 14:
try:
money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14);
if money_flow_index is not None and not money_flow_index.empty and not pd.isna(money_flow_index.iloc[-1]): volume['mfi'] = float(money_flow_index.iloc[-1]);
except Exception as mfi_error: pass;
if len(dataframe) >= 20:
try:
volume_avg_20 = float(dataframe['volume'].tail(20).mean());
current_volume = float(dataframe['volume'].iloc[-1]) if not dataframe['volume'].empty else 0;
if volume_avg_20 and volume_avg_20 > 0 and current_volume > 0:
volume_ratio = current_volume / volume_avg_20;
if not np.isnan(volume_ratio): volume['volume_ratio'] = volume_ratio;
except Exception as volume_error: pass;
except Exception as e: pass;
return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)};
def _calculate_cycle_indicators(self, dataframe):
cycle = {};
try:
if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
if len(dataframe) >= 9:
hull_moving_average = ta.hma(dataframe['close'], length=9);
if hull_moving_average is not None and not hull_moving_average.empty and not pd.isna(hull_moving_average.iloc[-1]): cycle['hull_ma'] = float(hull_moving_average.iloc[-1]);
if len(dataframe) >= 10:
supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3);
if supertrend is not None and not supertrend.empty:
supertrend_value = supertrend.get('SUPERT_10_3.0');
if supertrend_value is not None and not supertrend_value.empty and not pd.isna(supertrend_value.iloc[-1]): cycle['supertrend'] = float(supertrend_value.iloc[-1]);
except Exception as e: pass;
return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)};
print("✅ ML Module: Technical Indicators loaded (V10.2 - Anti-Fragile FIX)") |