File size: 21,005 Bytes
e173390
079f572
 
 
66bf018
079f572
adb387e
 
 
 
3e5d7c8
adb387e
 
 
 
079f572
 
66bf018
079f572
 
 
 
 
 
 
 
e173390
66bf018
 
e173390
 
66bf018
 
 
 
e173390
 
 
 
 
 
 
 
 
 
 
 
 
66bf018
 
 
 
 
 
 
 
 
 
 
 
 
adb387e
66bf018
adb387e
e173390
 
 
 
 
 
 
 
 
 
 
66bf018
adb387e
e173390
 
 
 
 
 
 
66bf018
 
e173390
 
 
 
 
 
 
 
 
 
 
 
 
66bf018
adb387e
e173390
 
 
 
 
 
 
 
 
66bf018
e173390
 
 
 
 
 
 
 
eced413
e173390
 
 
 
 
 
 
 
 
eced413
 
 
e173390
 
adb387e
e173390
 
 
 
 
 
adb387e
66bf018
e173390
 
eced413
adb387e
e173390
66bf018
e173390
 
 
 
 
 
66bf018
 
 
 
 
079f572
eced413
079f572
 
 
 
 
 
 
 
 
 
 
 
eced413
079f572
eced413
079f572
eced413
 
079f572
eced413
 
079f572
eced413
 
079f572
eced413
 
079f572
 
eced413
079f572
eced413
 
 
 
 
079f572
 
eced413
079f572
eced413
 
 
 
 
079f572
 
eced413
079f572
eced413
079f572
eced413
 
079f572
eced413
079f572
eced413
 
 
 
079f572
eced413
079f572
eced413
 
079f572
eced413
 
 
 
079f572
 
eced413
079f572
eced413
079f572
eced413
079f572
eced413
 
 
 
079f572
eced413
079f572
eced413
 
 
 
 
079f572
 
eced413
079f572
eced413
079f572
 
eced413
079f572
 
eced413
66bf018
eced413
0efffff
eced413
 
 
 
079f572
eced413
079f572
 
eced413
 
 
 
079f572
eced413
 
 
079f572
 
eced413
 
 
079f572
 
eced413
 
079f572
eced413
 
 
 
 
079f572
 
eced413
079f572
eced413
079f572
eced413
 
079f572
eced413
079f572
eced413
 
 
 
079f572
e173390
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# ml_engine/indicators.py (V10.2 - Anti-Fragile FIX)
import pandas as pd
import pandas_ta as ta
import numpy as np
from typing import Dict

try:
    from hurst import compute_Hc
    HURST_AVAILABLE = True
except ImportError:
    print("⚠️ مكتبة 'hurst' غير موجودة. ميزة 'مفتاح النظام' ستكون معطلة.")
    print("   -> قم بتثبيتها: pip install hurst")
    HURST_AVAILABLE = False


class AdvancedTechnicalAnalyzer:
    def __init__(self):
        # (هذا الكونفيغ سيبقى للاستخدامات القديمة مثل الحارس 1m)
        self.indicators_config = {
            'trend': ['ema_9', 'ema_21', 'ema_50', 'ema_200', 'ichimoku', 'adx', 'parabolic_sar', 'dmi'],
            'momentum': ['rsi', 'stoch_rsi', 'macd', 'williams_r', 'cci', 'awesome_oscillator', 'momentum'],
            'volatility': ['bbands', 'atr', 'keltner', 'donchian', 'rvi'],
            'volume': ['vwap', 'obv', 'mfi', 'volume_profile', 'ad', 'volume_oscillator'],
            'cycle': ['hull_ma', 'supertrend', 'zigzag', 'fisher_transform']
        }
    
    # 🔴 --- START OF UPDATED FUNCTION (V10.2 - Anti-Fragile) --- 🔴
    def calculate_v9_smart_features(self, dataframe: pd.DataFrame) -> Dict[str, float]:
        """
        (محدث V10.2) - (إصلاح خطأ "الميزات المفقودة" بشكل نهائي)
        - استخدام "قالب الميزات" لضمان إرجاع جميع الميزات دائماً.
        """
        if dataframe.empty or dataframe is None or len(dataframe) < 100: 
            return {}
            
        # --- (V10.2) الخطوة 1: تعريف "قالب الميزات" بالقيم الافتراضية ---
        # (هذه هي جميع الميزات التي تدرب عليها نموذج V9.8)
        features = {
            'price_to_ema_50': 0.0, 'price_to_ema_200': 0.0, 'price_to_min_100': 0.0,
            'price_to_max_100': 0.0, 'slope_14_50': 0.0, 'adx_slope': 0.0,
            'volume_zscore_50': 0.0, 'vwap_gap': 0.0, 'cmf_20': 0.0, 'vroc_12': 0.0,
            'obv_slope': 0.0, 'rsi_14': 50.0, 'rsi_mean_10': 50.0, 'rsi_std_10': 0.0,
            'mfi_14': 50.0, 'mfi_mean_10': 50.0, 'adx_14': 20.0, 'atr_percent': 0.0,
            'vol_of_vol': 0.0, 'atr_normalized_return': 0.0, 'hurst': 0.5,
            'ppo_hist': 0.0, 'ppo_line': 0.0
            # (ميزات مونت كارلو ستضاف لاحقاً في data_manager)
        }

        try:
            # --- جلب البيانات الأساسية (Series) ---
            close = dataframe['close']
            high = dataframe['high']
            low = dataframe['low']
            volume = dataframe['volume']
            current_price = close.iloc[-1]
            
            # --- 1. حساب مؤشرات السلسلة الكاملة (Series) ---
            rsi_series = ta.rsi(close, length=14)
            mfi_series = ta.mfi(high, low, close, volume, length=14)
            atr_series = ta.atr(high, low, close, length=14)
            adx_data = ta.adx(high, low, close, length=14)
            obv_series = ta.obv(close, volume)

            # --- 2. ميزات "نسب السعر" (Price Ratios) ---
            try:
                ema_50 = ta.ema(close, length=50).iloc[-1]
                ema_200 = ta.ema(close, length=200).iloc[-1]
                if ema_50 and ema_50 > 0: features['price_to_ema_50'] = (current_price / ema_50) - 1
                if ema_200 and ema_200 > 0: features['price_to_ema_200'] = (current_price / ema_200) - 1
                min_100 = low.tail(100).min(); max_100 = high.tail(100).max()
                if min_100 and min_100 > 0: features['price_to_min_100'] = (current_price / min_100) - 1
                if max_100 and max_100 > 0: features['price_to_max_100'] = (current_price / max_100) - 1
                ema_14 = ta.ema(close, length=14).iloc[-1]
                if ema_14 and ema_50: features['slope_14_50'] = (ema_14 - ema_50) / 14
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)

            # --- 3. ميزات "الميل" (Slope) ---
            try:
                if adx_data is not None and not adx_data.empty:
                    adx_series = adx_data['ADX_14']
                    if adx_series is not None and not adx_series.empty:
                        adx_ema_5 = ta.ema(adx_series, length=5).iloc[-1]; adx_ema_15 = ta.ema(adx_series, length=15).iloc[-1]
                        if adx_ema_5 and adx_ema_15: features['adx_slope'] = (adx_ema_5 - adx_ema_15) / 5
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)

            # --- 4. ميزات "الحجم" (Volume) و "السيولة" ---
            try:
                vol_ma_50 = volume.tail(50).mean(); vol_std_50 = volume.tail(50).std()
                if vol_std_50 and vol_std_50 > 0: features['volume_zscore_50'] = (volume.iloc[-1] - vol_ma_50) / vol_std_50
                vwap = ta.vwap(high, low, close, volume).iloc[-1]
                if vwap and vwap > 0: features['vwap_gap'] = (current_price - vwap) / vwap
                cmf = ta.cmf(high, low, close, volume, length=20)
                if cmf is not None and not cmf.empty: features['cmf_20'] = cmf.iloc[-1]
                vroc = ta.roc(volume, length=12)
                if vroc is not None and not vroc.empty: features['vroc_12'] = vroc.iloc[-1]
                if obv_series is not None and not obv_series.empty:
                    obv_ema_10 = ta.ema(obv_series, length=10).iloc[-1]; obv_ema_30 = ta.ema(obv_series, length=30).iloc[-1]
                    if obv_ema_10 and obv_ema_30: features['obv_slope'] = (obv_ema_10 - obv_ema_30) / 10
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)

            # --- 5. ميزات "تجميعية" (Aggregative) ---
            try:
                if rsi_series is not None and not rsi_series.empty:
                    features['rsi_14'] = rsi_series.iloc[-1]; features['rsi_mean_10'] = rsi_series.tail(10).mean(); features['rsi_std_10'] = rsi_series.tail(10).std()
                if mfi_series is not None and not mfi_series.empty:
                    features['mfi_14'] = mfi_series.iloc[-1]; features['mfi_mean_10'] = mfi_series.tail(10).mean()
                if adx_data is not None and not adx_data.empty: 
                    adx_val = adx_data['ADX_14'].iloc[-1]
                    if adx_val is not None: features['adx_14'] = adx_val
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)

            # --- 6. ميزات "التقلب" (Volatility) ---
            try:
                atr_val = None
                if atr_series is not None and not atr_series.empty:
                    atr_val = atr_series.iloc[-1]
                    if atr_val and current_price > 0: features['atr_percent'] = (atr_val / current_price) * 100
                    vol_of_vol_series = ta.atr(atr_series, length=10) # (Vol-of-Vol)
                    if vol_of_vol_series is not None and not vol_of_vol_series.empty: features['vol_of_vol'] = vol_of_vol_series.iloc[-1]
                
                last_return = close.pct_change().iloc[-1]
                if atr_val and atr_val > 0: 
                    features['atr_normalized_return'] = last_return / atr_val
                # (لا نحتاج else، القيمة الافتراضية 0.0 موجودة)
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)
                
            # --- 7. ميزات النظام (Regime Features) ---
            try:
                if HURST_AVAILABLE:
                    hurst_series = close.tail(100).to_numpy()
                    H, c, data = compute_Hc(hurst_series, kind='price', simplified=True)
                    features['hurst'] = H
                # (لا نحتاج else، القيمة الافتراضية 0.5 موجودة)
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)

            try:
                ppo_data = ta.ppo(close, fast=12, slow=26, signal=9)
                if ppo_data is not None and not ppo_data.empty:
                    features['ppo_hist'] = ppo_data['PPOh_12_26_9'].iloc[-1]
                    features['ppo_line'] = ppo_data['PPO_12_26_9'].iloc[-1]
            except Exception: pass # (فشل هذا الجزء، ستبقى القيم الافتراضية)

        except Exception as e:
            # (فشل كبير، سنعيد القالب الافتراضي)
            # print(f"⚠️ خطأ كارثي في حساب ميزات V9.8: {e}"); 
            pass 
            
        # (تنظيف نهائي للتأكد من عدم وجود NaN/Inf)
        for key, value in features.items():
            if not np.isfinite(value):
                features[key] = 0.0 # (إعادة التعيين إلى 0.0 إذا كان الحساب NaN)
        
        return features
    # 🔴 --- END OF UPDATED FUNCTION (V10.2) --- 🔴


    # -----------------------------------------------------------------
    # --- (الدوال القديمة تبقى كما هي للاستخدامات الأخرى مثل Sentry 1m) ---
    # -----------------------------------------------------------------

    def calculate_all_indicators(self, dataframe, timeframe):
        if dataframe.empty or dataframe is None: return {}
        indicators = {}
        try:
            indicators.update(self._calculate_trend_indicators(dataframe))
            indicators.update(self._calculate_momentum_indicators(dataframe))
            indicators.update(self._calculate_volatility_indicators(dataframe))
            indicators.update(self._calculate_volume_indicators(dataframe, timeframe))
            indicators.update(self._calculate_cycle_indicators(dataframe))
        except Exception as e:
            print(f"⚠️ خطأ في حساب المؤشرات لـ {timeframe}: {e}")
        return indicators
    
    def _calculate_trend_indicators(self, dataframe):
        trend = {};
        try:
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
            if len(dataframe) >= 9: 
                ema_9 = ta.ema(dataframe['close'], length=9);
                if ema_9 is not None and not ema_9.empty and not pd.isna(ema_9.iloc[-1]): trend['ema_9'] = float(ema_9.iloc[-1]);
            if len(dataframe) >= 21: 
                ema_21 = ta.ema(dataframe['close'], length=21);
                if ema_21 is not None and not ema_21.empty and not pd.isna(ema_21.iloc[-1]): trend['ema_21'] = float(ema_21.iloc[-1]);
            if len(dataframe) >= 50: 
                ema_50 = ta.ema(dataframe['close'], length=50);
                if ema_50 is not None and not ema_50.empty and not pd.isna(ema_50.iloc[-1]): trend['ema_50'] = float(ema_50.iloc[-1]);
            if len(dataframe) >= 200: 
                ema_200 = ta.ema(dataframe['close'], length=200);
                if ema_200 is not None and not ema_200.empty and not pd.isna(ema_200.iloc[-1]): trend['ema_200'] = float(ema_200.iloc[-1]);
            if len(dataframe) >= 26:
                try:
                    ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close']);
                    if ichimoku is not None and len(ichimoku) > 0:
                        conversion_line = ichimoku[0].get('ITS_9') if ichimoku[0] is not None else None;
                        base_line = ichimoku[0].get('IKS_26') if ichimoku[0] is not None else None;
                        if conversion_line is not None and not conversion_line.empty and not pd.isna(conversion_line.iloc[-1]): trend['ichimoku_conversion'] = float(conversion_line.iloc[-1]);
                        if base_line is not None and not base_line.empty and not pd.isna(base_line.iloc[-1]): trend['ichimoku_base'] = float(base_line.iloc[-1]);
                except Exception as ichimoku_error: pass;
            if len(dataframe) >= 14:
                try:
                    adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14);
                    if adx_result is not None and not adx_result.empty:
                        adx_value = adx_result.get('ADX_14');
                        if adx_value is not None and not adx_value.empty and not pd.isna(adx_value.iloc[-1]): trend['adx'] = float(adx_value.iloc[-1]);
                except Exception as adx_error: pass;
        except Exception as e: pass;
        return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)};
    
    def _calculate_momentum_indicators(self, dataframe):
        momentum = {};
        try:
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
            if len(dataframe) >= 14:
                rsi = ta.rsi(dataframe['close'], length=14);
                if rsi is not None and not rsi.empty and not pd.isna(rsi.iloc[-1]): momentum['rsi'] = float(rsi.iloc[-1]);
            if len(dataframe) >= 26:
                macd = ta.macd(dataframe['close']);
                if macd is not None and not macd.empty:
                    macd_hist = macd.get('MACDh_12_26_9');
                    macd_line = macd.get('MACD_12_26_9');
                    if macd_hist is not None and not macd_hist.empty and not pd.isna(macd_hist.iloc[-1]): momentum['macd_hist'] = float(macd_hist.iloc[-1]);
                    if macd_line is not None and not macd_line.empty and not pd.isna(macd_line.iloc[-1]): momentum['macd_line'] = float(macd_line.iloc[-1]);
            if len(dataframe) >= 14:
                stoch_rsi = ta.stochrsi(dataframe['close'], length=14);
                if stoch_rsi is not None and not stoch_rsi.empty:
                    stoch_k = stoch_rsi.get('STOCHRSIk_14_14_3_3');
                    if stoch_k is not None and not stoch_k.empty and not pd.isna(stoch_k.iloc[-1]): momentum['stoch_rsi_k'] = float(stoch_k.iloc[-1]);
            if len(dataframe) >= 14:
                williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14);
                if williams is not None and not williams.empty and not pd.isna(williams.iloc[-1]): momentum['williams_r'] = float(williams.iloc[-1]);
        except Exception as e: pass;
        return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)};
    
    def _calculate_volatility_indicators(self, dataframe):
        volatility = {};
        try:
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
            if len(dataframe) >= 20:
                bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2);
                if bollinger_bands is not None and not bollinger_bands.empty:
                    bb_lower = bollinger_bands.get('BBL_20_2.0'); bb_upper = bollinger_bands.get('BBU_20_2.0'); bb_middle = bollinger_bands.get('BBM_20_2.0');
                    if bb_lower is not None and not bb_lower.empty and not pd.isna(bb_lower.iloc[-1]): volatility['bb_lower'] = float(bb_lower.iloc[-1]);
                    if bb_upper is not None and not bb_upper.empty and not pd.isna(bb_upper.iloc[-1]): volatility['bb_upper'] = float(bb_upper.iloc[-1]);
                    if bb_middle is not None and not bb_middle.empty and not pd.isna(bb_middle.iloc[-1]): volatility['bb_middle'] = float(bb_middle.iloc[-1]);
            if len(dataframe) >= 14:
                average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14);
                if average_true_range is not None and not average_true_range.empty and not pd.isna(average_true_range.iloc[-1]): 
                    atr_value = float(average_true_range.iloc[-1]); volatility['atr'] = atr_value;
                    current_close = dataframe['close'].iloc[-1] if not dataframe['close'].empty else 0;
                    if atr_value and current_close > 0: volatility['atr_percent'] = (atr_value / current_close) * 100;
        except Exception as e: pass;
        return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)};
    
    def _calculate_volume_indicators(self, dataframe, timeframe):
        volume = {};
        try:
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns or 'volume' not in dataframe.columns: return {};
            if len(dataframe) >= 1:
                try:
                    df_vwap = dataframe.copy();
                    if not isinstance(df_vwap.index, pd.DatetimeIndex):
                        if 'timestamp' in df_vwap.columns:
                            df_vwap['timestamp'] = pd.to_datetime(df_vwap['timestamp'], unit='ms'); df_vwap.set_index('timestamp', inplace=True);
                        elif not df_vwap.index.is_numeric():
                             df_vwap.index = pd.to_datetime(df_vwap.index, unit='ms');
                        else:
                             raise ValueError("DataFrame needs 'timestamp' column or DatetimeIndex");
                    df_vwap.sort_index(inplace=True);
                    volume_weighted_average_price = ta.vwap(high=df_vwap['high'], low=df_vwap['low'], close=df_vwap['close'], volume=df_vwap['volume']);
                    if volume_weighted_average_price is not None and not volume_weighted_average_price.empty and not pd.isna(volume_weighted_average_price.iloc[-1]): volume['vwap'] = float(volume_weighted_average_price.iloc[-1]);
                except Exception as vwap_error:
                    if "VWAP requires an ordered DatetimeIndex" not in str(vwap_error) and "Index" not in str(vwap_error): pass;
                    if len(dataframe) >= 20:
                        try:
                            typical_price = (dataframe['high'] + dataframe['low'] + dataframe['close']) / 3;
                            vwap_simple = (typical_price * dataframe['volume']).sum() / dataframe['volume'].sum();
                            if not np.isnan(vwap_simple): volume['vwap'] = float(vwap_simple);
                        except Exception as simple_vwap_error: pass;
            try:
                on_balance_volume = ta.obv(dataframe['close'], dataframe['volume']);
                if on_balance_volume is not None and not on_balance_volume.empty and not pd.isna(on_balance_volume.iloc[-1]): volume['obv'] = float(on_balance_volume.iloc[-1]);
            except Exception as obv_error: pass;
            if len(dataframe) >= 14:
                try:
                    money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14);
                    if money_flow_index is not None and not money_flow_index.empty and not pd.isna(money_flow_index.iloc[-1]): volume['mfi'] = float(money_flow_index.iloc[-1]);
                except Exception as mfi_error: pass;
            if len(dataframe) >= 20:
                try:
                    volume_avg_20 = float(dataframe['volume'].tail(20).mean());
                    current_volume = float(dataframe['volume'].iloc[-1]) if not dataframe['volume'].empty else 0;
                    if volume_avg_20 and volume_avg_20 > 0 and current_volume > 0: 
                        volume_ratio = current_volume / volume_avg_20;
                        if not np.isnan(volume_ratio): volume['volume_ratio'] = volume_ratio;
                except Exception as volume_error: pass;
        except Exception as e: pass;
        return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)};
    
    def _calculate_cycle_indicators(self, dataframe):
        cycle = {};
        try:
            if dataframe is None or dataframe.empty or 'close' not in dataframe.columns: return {};
            if len(dataframe) >= 9:
                hull_moving_average = ta.hma(dataframe['close'], length=9);
                if hull_moving_average is not None and not hull_moving_average.empty and not pd.isna(hull_moving_average.iloc[-1]): cycle['hull_ma'] = float(hull_moving_average.iloc[-1]);
            if len(dataframe) >= 10:
                supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3);
                if supertrend is not None and not supertrend.empty:
                    supertrend_value = supertrend.get('SUPERT_10_3.0');
                    if supertrend_value is not None and not supertrend_value.empty and not pd.isna(supertrend_value.iloc[-1]): cycle['supertrend'] = float(supertrend_value.iloc[-1]);
        except Exception as e: pass;
        return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)};

print("✅ ML Module: Technical Indicators loaded (V10.2 - Anti-Fragile FIX)")