Spaces:
Running
Running
| # helpers.py | |
| import os, re, json, hashlib | |
| from datetime import datetime | |
| import pandas as pd | |
| import numpy as np | |
| def safe_float_conversion(value, default=0.0): | |
| try: | |
| if value is None: return default | |
| if isinstance(value, (int, float)): return float(value) | |
| if isinstance(value, str): | |
| cleaned = ''.join(c for c in value if c.isdigit() or c in '.-') | |
| return float(cleaned) if cleaned else default | |
| return default | |
| except (ValueError, TypeError): return default | |
| def _apply_patience_logic(decision, hold_minutes, trade_data, processed_data): | |
| action = decision.get('action') | |
| if action == "CLOSE_TRADE" and hold_minutes < 20: | |
| current_price = processed_data.get('current_price', 0) | |
| entry_price = trade_data.get('entry_price', 0) | |
| try: profit_loss_percent = ((current_price - entry_price) / entry_price) * 100 | |
| except (TypeError, ZeroDivisionError): profit_loss_percent = 0 | |
| if profit_loss_percent < 2: | |
| decision.update({ | |
| 'action': "HOLD", | |
| 'reasoning': f"Patience Filter: Blocked premature sell. Held for {hold_minutes:.1f}m. Giving trade more time." | |
| }) | |
| return decision | |
| def parse_json_from_response(response_text: str): | |
| try: | |
| json_match = re.search(r'```json\n(.*?)\n```', response_text, re.DOTALL) | |
| if json_match: return json_match.group(1).strip() | |
| json_match = re.search(r'\{.*\}', response_text, re.DOTALL) | |
| if json_match: return json_match.group() | |
| return None | |
| except Exception: return None | |
| def validate_required_fields(data_dict: dict, required_fields: list) -> bool: | |
| return all(field in data_dict for field in required_fields) | |
| def format_technical_indicators(advanced_indicators): | |
| """تنسيق جميع المؤشرات الفنية بشكل شامل للنموذج الضخم""" | |
| if not advanced_indicators: return "No data for advanced indicators." | |
| summary = [] | |
| for timeframe, indicators in advanced_indicators.items(): | |
| if indicators: | |
| parts = [] | |
| # مؤشرات الاتجاه | |
| if 'ema_9' in indicators: parts.append(f"EMA9: {indicators['ema_9']:.6f}") | |
| if 'ema_21' in indicators: parts.append(f"EMA21: {indicators['ema_21']:.6f}") | |
| if 'ema_50' in indicators: parts.append(f"EMA50: {indicators['ema_50']:.6f}") | |
| if 'ema_200' in indicators: parts.append(f"EMA200: {indicators['ema_200']:.6f}") | |
| if 'adx' in indicators: parts.append(f"ADX: {indicators['adx']:.2f}") | |
| if 'ichimoku_conversion' in indicators: parts.append(f"Ichimoku Conv: {indicators['ichimoku_conversion']:.6f}") | |
| if 'ichimoku_base' in indicators: parts.append(f"Ichimoku Base: {indicators['ichimoku_base']:.6f}") | |
| # مؤشرات الزخم | |
| if 'rsi' in indicators: parts.append(f"RSI: {indicators['rsi']:.2f}") | |
| if 'macd_hist' in indicators: parts.append(f"MACD Hist: {indicators['macd_hist']:.6f}") | |
| if 'macd_line' in indicators: parts.append(f"MACD Line: {indicators['macd_line']:.6f}") | |
| if 'stoch_rsi_k' in indicators: parts.append(f"Stoch RSI: {indicators['stoch_rsi_k']:.2f}") | |
| if 'williams_r' in indicators: parts.append(f"Williams %R: {indicators['williams_r']:.2f}") | |
| # مؤشرات التقلب | |
| if 'bb_upper' in indicators: parts.append(f"BB Upper: {indicators['bb_upper']:.6f}") | |
| if 'bb_lower' in indicators: parts.append(f"BB Lower: {indicators['bb_lower']:.6f}") | |
| if 'bb_middle' in indicators: parts.append(f"BB Middle: {indicators['bb_middle']:.6f}") | |
| if 'atr' in indicators: parts.append(f"ATR: {indicators['atr']:.6f}") | |
| if 'atr_percent' in indicators: parts.append(f"ATR %: {indicators['atr_percent']:.2f}%") | |
| # مؤشرات الحجم | |
| if 'volume_ratio' in indicators: parts.append(f"Volume Ratio: {indicators['volume_ratio']:.2f}x") | |
| if 'vwap' in indicators: parts.append(f"VWAP: {indicators['vwap']:.6f}") | |
| if 'obv' in indicators: parts.append(f"OBV: {indicators['obv']:.0f}") | |
| if 'mfi' in indicators: parts.append(f"MFI: {indicators['mfi']:.2f}") | |
| # مؤشرات الدورة | |
| if 'hull_ma' in indicators: parts.append(f"Hull MA: {indicators['hull_ma']:.6f}") | |
| if 'supertrend' in indicators: parts.append(f"Supertrend: {indicators['supertrend']:.6f}") | |
| if parts: | |
| summary.append(f"{timeframe.upper()}: {', '.join(parts)}") | |
| return "\n".join(summary) if summary else "Insufficient indicator data." | |
| def format_strategy_scores(strategy_scores, recommended_strategy): | |
| if not strategy_scores: return "No strategy data available." | |
| summary = [f"Recommended Strategy: {recommended_strategy}"] | |
| sorted_scores = sorted(strategy_scores.items(), key=lambda item: item[1], reverse=True) | |
| for strategy, score in sorted_scores: | |
| score_display = f"{score:.3f}" if isinstance(score, (int, float)) else str(score) | |
| summary.append(f" • {strategy}: {score_display}") | |
| return "\n".join(summary) | |
| def format_whale_analysis_for_llm(whale_analysis): | |
| """تنسيق تحليل الحيتان للنموذج الضخم بشكل مفيد وواضح""" | |
| if not whale_analysis or not whale_analysis.get('data_available', False): | |
| return "📊 تحليل الحيتان: لا توجد بيانات عن تحركات الحيتان الحديثة" | |
| summary = whale_analysis.get('llm_friendly_summary', {}) | |
| if not summary: | |
| return "📊 تحليل الحيتان: بيانات الحيتان غير متوفرة" | |
| formatted = f"📊 تحليل الحيتان:\n" | |
| formatted += f" • النشاط: {summary.get('whale_activity_summary', 'لا توجد معلومات')}\n" | |
| formatted += f" • التوصية: {summary.get('recommended_action', 'HOLD')}\n" | |
| formatted += f" • مستوى الثقة: {summary.get('confidence', 0.5):.1%}\n" | |
| metrics = summary.get('key_metrics', {}) | |
| if metrics: | |
| flow_direction = metrics.get('net_flow_direction', 'غير معروف') | |
| impact_level = metrics.get('whale_movement_impact', 'غير معروف') | |
| exchange_involvement = metrics.get('exchange_involvement', 'غير معروف') | |
| formatted += f" • اتجاه التدفق: {flow_direction}\n" | |
| formatted += f" • مستوى التأثير: {impact_level}\n" | |
| formatted += f" • مشاركة المنصات: {exchange_involvement}" | |
| # إضافة تحذير إذا كان هناك نشاط حرج | |
| if whale_analysis.get('trading_signal', {}).get('critical_alert', False): | |
| formatted += "\n ⚠️ تحذير: نشاط حيتان حرج يتطلب الحذر" | |
| return formatted | |
| def validate_candidate_data_enhanced(candidate): | |
| try: | |
| required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score'] | |
| for field in required_fields: | |
| if field not in candidate: candidate[field] = 0.0 if field.endswith('_score') or field == 'current_price' else 'UNKNOWN' | |
| candidate['current_price'] = safe_float_conversion(candidate.get('current_price'), 0.0) | |
| candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.0) # ❌ تغيير من 0.5 إلى 0.0 | |
| candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score']) | |
| if 'reasons_for_candidacy' not in candidate: candidate['reasons_for_candidacy'] = ['unknown_reason'] | |
| if 'sentiment_data' not in candidate: candidate['sentiment_data'] = {'btc_sentiment': 'NEUTRAL','fear_and_greed_index': 50,'general_whale_activity': {'sentiment': 'NEUTRAL', 'critical_alert': False}} | |
| if 'advanced_indicators' not in candidate: candidate['advanced_indicators'] = {} | |
| if 'strategy_scores' not in candidate: candidate['strategy_scores'] = {} | |
| if 'target_strategy' not in candidate: candidate['target_strategy'] = 'GENERIC' | |
| return True | |
| except Exception as error: | |
| print(f"Failed to validate candidate data for {candidate.get('symbol')}: {error}") | |
| return False | |
| def normalize_weights(weights_dict): | |
| total = sum(weights_dict.values()) | |
| if total > 0: | |
| for strategy in weights_dict: | |
| weights_dict[strategy] /= total | |
| return weights_dict | |
| def calculate_market_volatility(market_context): | |
| try: | |
| btc_price = market_context.get('bitcoin_price_usd', 0) | |
| fear_greed = market_context.get('fear_and_greed_index', 50) | |
| whale_sentiment = market_context.get('general_whale_activity', {}).get('sentiment', 'NEUTRAL') | |
| volatility_score = 0 | |
| if btc_price > 0: | |
| if abs(fear_greed - 50) > 20: | |
| volatility_score += 1 | |
| if whale_sentiment in ['BULLISH', 'BEARISH']: | |
| volatility_score += 1 | |
| elif whale_sentiment == 'SLIGHTLY_BULLISH': | |
| volatility_score += 0.5 | |
| if volatility_score >= 1.5: | |
| return "high" | |
| elif volatility_score >= 0.5: | |
| return "medium" | |
| else: | |
| return "low" | |
| except Exception as e: | |
| print(f"Volatility calculation error: {e}") | |
| return "medium" | |
| def generate_trade_id(): | |
| return str(int(time.time())) | |
| def should_update_weights(performance_history_count): | |
| if performance_history_count <= 10: | |
| return True | |
| return performance_history_count % 3 == 0 | |
| def format_enhanced_analysis_for_llm(candidate_data, whale_analysis=None, market_context=None): | |
| """تنسيق تحليل متقدم شامل للنموذج الضخم""" | |
| formatted = "📈 التحليل الشامل للعملة:\n" | |
| # المعلومات الأساسية | |
| formatted += f"💰 العملة: {candidate_data.get('symbol', 'N/A')}\n" | |
| formatted += f"💰 السعر الحالي: ${safe_float_conversion(candidate_data.get('current_price', 0)):.6f}\n" | |
| formatted += f"🎯 النتيجة المحسنة: {safe_float_conversion(candidate_data.get('enhanced_final_score', 0)):.3f}\n" | |
| # المؤشرات الفنية | |
| advanced_indicators = candidate_data.get('advanced_indicators', {}) | |
| if advanced_indicators: | |
| formatted += "\n🔧 المؤشرات الفنية:\n" | |
| for timeframe, indicators in advanced_indicators.items(): | |
| if indicators: | |
| tech_parts = [] | |
| if 'rsi' in indicators: tech_parts.append(f"RSI: {indicators['rsi']:.1f}") | |
| if 'macd_hist' in indicators: tech_parts.append(f"MACD: {indicators['macd_hist']:.6f}") | |
| if 'volume_ratio' in indicators: tech_parts.append(f"Volume: {indicators['volume_ratio']:.1f}x") | |
| if 'ema_9' in indicators and 'ema_21' in indicators: | |
| ema_signal = "↑" if indicators['ema_9'] > indicators['ema_21'] else "↓" | |
| tech_parts.append(f"EMA: {ema_signal}") | |
| if 'adx' in indicators: tech_parts.append(f"ADX: {indicators['adx']:.1f}") | |
| if 'bb_upper' in indicators and 'bb_lower' in indicators: | |
| bb_position = (candidate_data.get('current_price', 0) - indicators['bb_lower']) / (indicators['bb_upper'] - indicators['bb_lower']) | |
| bb_signal = "HIGH" if bb_position > 0.8 else "LOW" if bb_position < 0.2 else "MID" | |
| tech_parts.append(f"BB: {bb_signal}") | |
| if tech_parts: | |
| formatted += f" • {timeframe}: {', '.join(tech_parts)}\n" | |
| # استراتيجيات التداول | |
| strategy_scores = candidate_data.get('strategy_scores', {}) | |
| if strategy_scores: | |
| formatted += "\n🎯 استراتيجيات التداول:\n" | |
| sorted_strategies = sorted(strategy_scores.items(), key=lambda x: x[1], reverse=True)[:3] | |
| for strategy, score in sorted_strategies: | |
| formatted += f" • {strategy}: {score:.3f}\n" | |
| # بيانات الحيتان (إذا كانت متوفرة) | |
| if whale_analysis: | |
| formatted += f"\n{format_whale_analysis_for_llm(whale_analysis)}\n" | |
| # سياق السوق (إذا كان متوفراً) | |
| if market_context: | |
| formatted += "\n🌍 سياق السوق العام:\n" | |
| btc_sentiment = market_context.get('btc_sentiment', 'NEUTRAL') | |
| fear_greed = market_context.get('fear_and_greed_index', 50) | |
| formatted += f" • اتجاه البيتكوين: {btc_sentiment}\n" | |
| formatted += f" • مؤشر الخوف والجشع: {fear_greed}\n" | |
| # أسباب الترشيح | |
| reasons = candidate_data.get('reasons_for_candidacy', []) | |
| if reasons and len(reasons) > 0: | |
| formatted += "\n📋 أسباب الترشيح:\n" | |
| for i, reason in enumerate(reasons[:5], 1): | |
| formatted += f" {i}. {reason}\n" | |
| return formatted | |
| def create_whale_aware_trading_decision(base_decision, whale_analysis): | |
| """إنشاء قرار تداول مدرك لبيانات الحيتان""" | |
| if not whale_analysis or not whale_analysis.get('data_available', False): | |
| return base_decision | |
| whale_signal = whale_analysis.get('trading_signal', {}) | |
| whale_action = whale_signal.get('action', 'HOLD') | |
| whale_confidence = whale_signal.get('confidence', 0.5) | |
| base_action = base_decision.get('action', 'HOLD') | |
| base_confidence = base_decision.get('confidence_level', 0.5) | |
| # إذا كانت إشارة الحيتان حرجة، نعطيها أولوية عالية | |
| if whale_signal.get('critical_alert', False): | |
| if whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'BUY': | |
| return { | |
| **base_decision, | |
| 'action': 'HOLD', | |
| 'confidence_level': base_confidence * 0.6, | |
| 'reasoning': f"{base_decision.get('reasoning', '')} | تم التصحيح بسبب نشاط الحيتان الحرج: {whale_signal.get('reason', '')}" | |
| } | |
| elif whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'HOLD': | |
| return { | |
| **base_decision, | |
| 'action': 'BUY', | |
| 'confidence_level': (base_confidence + whale_confidence) / 2, | |
| 'reasoning': f"{base_decision.get('reasoning', '')} | تم التعزيز بسبب نشاط الحيتان الإيجابي: {whale_signal.get('reason', '')}" | |
| } | |
| # دمج الثقة مع إعطاء وزن 60% لبيانات الحيتان | |
| combined_confidence = (base_confidence * 0.4) + (whale_confidence * 0.6) | |
| # إذا كانت إشارة الحيتان قوية ومعاكسة، نغير القرار | |
| if whale_confidence > 0.8: | |
| if (whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'BUY') or \ | |
| (whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'SELL'): | |
| return { | |
| **base_decision, | |
| 'action': 'HOLD', | |
| 'confidence_level': combined_confidence * 0.8, | |
| 'reasoning': f"{base_decision.get('reasoning', '')} | تعارض مع تحركات الحيتان: {whale_signal.get('reason', '')}" | |
| } | |
| # إذا كانت الإشارات متوافقة، نعزز الثقة | |
| if (whale_action in ['STRONG_BUY', 'BUY'] and base_action == 'BUY') or \ | |
| (whale_action in ['STRONG_SELL', 'SELL'] and base_action == 'SELL'): | |
| enhanced_confidence = min(combined_confidence * 1.2, 0.95) | |
| return { | |
| **base_decision, | |
| 'confidence_level': enhanced_confidence, | |
| 'reasoning': f"{base_decision.get('reasoning', '')} | متوافق مع تحركات الحيتان" | |
| } | |
| # في الحالات الأخرى، نعيد القرار الأساسي مع الثقة المجمعة | |
| return { | |
| **base_decision, | |
| 'confidence_level': combined_confidence, | |
| 'reasoning': f"{base_decision.get('reasoning', '')} | أخذ بعين الاعتبار نشاط الحيتان" | |
| } | |
| def validate_whale_analysis_data(whale_data): | |
| """التحقق من صحة بيانات تحليل الحيتان""" | |
| if not whale_data: | |
| return False, "بيانات الحيتان فارغة" | |
| required_fields = ['symbol', 'data_available', 'trading_signal'] | |
| for field in required_fields: | |
| if field not in whale_data: | |
| return False, f"حقل {field} مفقود في بيانات الحيتان" | |
| if not whale_data['data_available']: | |
| return True, "لا توجد بيانات حيتان متاحة" | |
| signal_fields = ['action', 'confidence', 'reason'] | |
| trading_signal = whale_data.get('trading_signal', {}) | |
| for field in signal_fields: | |
| if field not in trading_signal: | |
| return False, f"حقل {field} مفقود في إشارة التداول" | |
| valid_actions = ['STRONG_BUY', 'BUY', 'HOLD', 'SELL', 'STRONG_SELL'] | |
| if trading_signal.get('action') not in valid_actions: | |
| return False, f"إجراء تداول غير صالح: {trading_signal.get('action')}" | |
| confidence = trading_signal.get('confidence', 0) | |
| if not (0 <= confidence <= 1): | |
| return False, f"مستوى الثقة خارج النطاق: {confidence}" | |
| return True, "بيانات الحيتان صالحة" | |
| def calculate_whale_impact_score(whale_analysis): | |
| """حساب درجة تأثير الحيتان من 0 إلى 100""" | |
| if not whale_analysis or not whale_analysis.get('data_available', False): | |
| return 0 | |
| trading_signal = whale_analysis.get('trading_signal', {}) | |
| action = trading_signal.get('action', 'HOLD') | |
| confidence = trading_signal.get('confidence', 0.5) | |
| # تعيين أوزان للإجراءات المختلفة | |
| action_weights = { | |
| 'STRONG_BUY': 100, | |
| 'BUY': 75, | |
| 'HOLD': 50, | |
| 'SELL': 25, | |
| 'STRONG_SELL': 0 | |
| } | |
| base_score = action_weights.get(action, 50) | |
| # تعديل الدرجة بناء على مستوى الثقة | |
| if confidence > 0.8: | |
| adjusted_score = base_score * 1.2 | |
| elif confidence > 0.6: | |
| adjusted_score = base_score * 1.0 | |
| else: | |
| adjusted_score = base_score * 0.8 | |
| # إذا كان هناك تحذير حرج، نعطي وزن إضافي | |
| if trading_signal.get('critical_alert', False): | |
| if action in ['STRONG_SELL', 'SELL']: | |
| adjusted_score = max(0, adjusted_score - 20) | |
| elif action in ['STRONG_BUY', 'BUY']: | |
| adjusted_score = min(100, adjusted_score + 20) | |
| return min(100, max(0, adjusted_score)) | |
| def format_whale_impact_for_display(whale_analysis): | |
| """تنسيق تأثير الحيتان للعرض في الواجهة""" | |
| impact_score = calculate_whale_impact_score(whale_analysis) | |
| if impact_score >= 80: | |
| return "🟢 تأثير إيجابي قوي" | |
| elif impact_score >= 60: | |
| return "🟡 تأثير إيجابي متوسط" | |
| elif impact_score >= 40: | |
| return "⚪ تأثير محايد" | |
| elif impact_score >= 20: | |
| return "🟠 تأثير سلبي متوسط" | |
| else: | |
| return "🔴 تأثير سلبي قوي" | |
| def should_override_trade_decision(base_decision, whale_analysis): | |
| """تحديد إذا كان يجب تغيير قرار التداول بناء على تحركات الحيتان""" | |
| if not whale_analysis or not whale_analysis.get('data_available', False): | |
| return False | |
| whale_signal = whale_analysis.get('trading_signal', {}) | |
| whale_action = whale_signal.get('action', 'HOLD') | |
| whale_confidence = whale_signal.get('confidence', 0.5) | |
| base_action = base_decision.get('action', 'HOLD') | |
| # شروط التغيير الإلزامي | |
| mandatory_override_conditions = [ | |
| whale_signal.get('critical_alert', False) and whale_confidence > 0.8, | |
| whale_confidence > 0.9 and whale_action in ['STRONG_SELL', 'STRONG_BUY'], | |
| base_action == 'BUY' and whale_action == 'STRONG_SELL' and whale_confidence > 0.7, | |
| base_action == 'SELL' and whale_action == 'STRONG_BUY' and whale_confidence > 0.7 | |
| ] | |
| return any(mandatory_override_conditions) | |
| def format_candle_data_for_pattern_analysis(ohlcv_data, timeframe='1h'): | |
| """تنسيق بيانات الشموع لتحليل الأنماط البيانية""" | |
| if not ohlcv_data or timeframe not in ohlcv_data: | |
| return "لا توجد بيانات شموع كافية لتحليل الأنماط" | |
| candles = ohlcv_data[timeframe] | |
| if len(candles) < 20: | |
| return f"بيانات غير كافية ({len(candles)} شمعة فقط)" | |
| # أخذ آخر 50 شمعة للتحليل | |
| recent_candles = candles[-50:] if len(candles) > 50 else candles | |
| formatted = f"📊 بيانات الشموع للإطار {timeframe.upper()} (آخر {len(recent_candles)} شمعة):\n" | |
| # تحليل الاتجاه | |
| first_close = recent_candles[0][4] | |
| last_close = recent_candles[-1][4] | |
| price_change = ((last_close - first_close) / first_close) * 100 | |
| trend = "🟢 صاعد" if price_change > 2 else "🔴 هابط" if price_change < -2 else "⚪ جانبي" | |
| # تحليل التقلب | |
| highs = [c[2] for c in recent_candles] | |
| lows = [c[3] for c in recent_candles] | |
| high_max = max(highs) | |
| low_min = min(lows) | |
| volatility = ((high_max - low_min) / low_min) * 100 | |
| # تحليل الحجم | |
| volumes = [c[5] for c in recent_candles] | |
| avg_volume = sum(volumes) / len(volumes) | |
| current_volume = recent_candles[-1][5] | |
| volume_ratio = current_volume / avg_volume if avg_volume > 0 else 1 | |
| formatted += f"📈 الاتجاه: {trend} ({price_change:+.2f}%)\n" | |
| formatted += f"🌊 التقلب: {volatility:.2f}% (النطاق: {low_min:.6f} - {high_max:.6f})\n" | |
| formatted += f"📦 الحجم: {volume_ratio:.2f}x المتوسط\n\n" | |
| # عرض آخر 10 شموع بالتفصيل | |
| formatted += "🕯️ آخر 10 شموع (من الأحدث إلى الأقدم):\n" | |
| for i in range(min(10, len(recent_candles))): | |
| idx = len(recent_candles) - 1 - i | |
| candle = recent_candles[idx] | |
| timestamp = datetime.fromtimestamp(candle[0] / 1000).strftime('%H:%M') | |
| open_price, high, low, close, volume = candle[1], candle[2], candle[3], candle[4], candle[5] | |
| candle_type = "🟢" if close > open_price else "🔴" if close < open_price else "⚪" | |
| body_size = abs(close - open_price) / open_price * 100 | |
| wick_upper = (high - max(open_price, close)) / high * 100 | |
| wick_lower = (min(open_price, close) - low) / low * 100 | |
| formatted += f" {timestamp} {candle_type} O:{open_price:.6f} H:{high:.6f} L:{low:.6f} C:{close:.6f} V:{volume:.0f}\n" | |
| formatted += f" الجسم: {body_size:.2f}% | الظلال: علوية {wick_upper:.2f}% / سفلية {wick_lower:.2f}%\n" | |
| return formatted |