|
|
|
|
|
import os |
|
|
import traceback |
|
|
import signal |
|
|
import sys |
|
|
import uvicorn |
|
|
import asyncio |
|
|
import json |
|
|
import time |
|
|
from contextlib import asynccontextmanager |
|
|
from fastapi import FastAPI, HTTPException |
|
|
from datetime import datetime |
|
|
|
|
|
|
|
|
try: |
|
|
from r2 import R2Service |
|
|
from LLM import LLMService |
|
|
from data_manager import DataManager |
|
|
from ml_engine.processor import MLProcessor |
|
|
from learning_engine import LearningEngine |
|
|
from sentiment_news import SentimentAnalyzer |
|
|
from trade_manager import TradeManager |
|
|
import state |
|
|
from helpers import safe_float_conversion, validate_candidate_data_enhanced |
|
|
except ImportError as e: |
|
|
print(f"❌ خطأ في استيراد الوحدات: {e}") |
|
|
sys.exit(1) |
|
|
|
|
|
|
|
|
r2_service_global = None |
|
|
data_manager_global = None |
|
|
llm_service_global = None |
|
|
learning_engine_global = None |
|
|
trade_manager_global = None |
|
|
sentiment_analyzer_global = None |
|
|
symbol_whale_monitor_global = None |
|
|
|
|
|
class StateManager: |
|
|
def __init__(self): |
|
|
self.market_analysis_lock = asyncio.Lock() |
|
|
self.trade_analysis_lock = asyncio.Lock() |
|
|
self.initialization_complete = False |
|
|
self.initialization_error = None |
|
|
self.services_initialized = { |
|
|
'r2_service': False, |
|
|
'data_manager': False, |
|
|
'llm_service': False, |
|
|
'learning_engine': False, |
|
|
'trade_manager': False, |
|
|
'sentiment_analyzer': False, |
|
|
'symbol_whale_monitor': False |
|
|
} |
|
|
|
|
|
async def wait_for_initialization(self, timeout=60): |
|
|
start_time = time.time() |
|
|
while not self.initialization_complete and (time.time() - start_time) < timeout: |
|
|
if self.initialization_error: |
|
|
raise Exception(f"فشل التهيئة: {self.initialization_error}") |
|
|
await asyncio.sleep(2) |
|
|
|
|
|
if not self.initialization_complete: |
|
|
raise Exception(f"انتهت مهلة التهيئة ({timeout} ثانية)") |
|
|
|
|
|
return self.initialization_complete |
|
|
|
|
|
def set_service_initialized(self, service_name): |
|
|
self.services_initialized[service_name] = True |
|
|
if all(self.services_initialized.values()): |
|
|
self.initialization_complete = True |
|
|
print("🎯 جميع الخدمات مهيأة بالكامل") |
|
|
|
|
|
def set_initialization_error(self, error): |
|
|
self.initialization_error = error |
|
|
print(f"❌ خطأ في التهيئة: {error}") |
|
|
|
|
|
state_manager = StateManager() |
|
|
|
|
|
async def initialize_services(): |
|
|
"""تهيئة جميع الخدمات بشكل منفصل""" |
|
|
global r2_service_global, data_manager_global, llm_service_global |
|
|
global learning_engine_global, trade_manager_global, sentiment_analyzer_global |
|
|
global symbol_whale_monitor_global |
|
|
|
|
|
try: |
|
|
print("🚀 بدء تهيئة الخدمات...") |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة R2Service...") |
|
|
r2_service_global = R2Service() |
|
|
state_manager.set_service_initialized('r2_service') |
|
|
print(" ✅ R2Service مهيأة") |
|
|
|
|
|
|
|
|
print(" 🔄 جلب قاعدة بيانات العقود...") |
|
|
contracts_database = await r2_service_global.load_contracts_db_async() |
|
|
print(f" ✅ تم تحميل {len(contracts_database)} عقد") |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة مراقب الحيتان...") |
|
|
try: |
|
|
from whale_news_data import EnhancedWhaleMonitor |
|
|
symbol_whale_monitor_global = EnhancedWhaleMonitor(contracts_database, r2_service_global) |
|
|
state_manager.set_service_initialized('symbol_whale_monitor') |
|
|
print(" ✅ مراقب الحيتان مهيأ") |
|
|
except Exception as e: |
|
|
print(f" ⚠️ فشل تهيئة مراقب الحيتان: {e}") |
|
|
symbol_whale_monitor_global = None |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة DataManager...") |
|
|
data_manager_global = DataManager(contracts_database, symbol_whale_monitor_global) |
|
|
await data_manager_global.initialize() |
|
|
state_manager.set_service_initialized('data_manager') |
|
|
print(" ✅ DataManager مهيأ") |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة LLMService...") |
|
|
llm_service_global = LLMService() |
|
|
llm_service_global.r2_service = r2_service_global |
|
|
state_manager.set_service_initialized('llm_service') |
|
|
print(" ✅ LLMService مهيأ") |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة محلل المشاعر...") |
|
|
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global) |
|
|
state_manager.set_service_initialized('sentiment_analyzer') |
|
|
print(" ✅ محلل المشاعر مهيأ") |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة محرك التعلم...") |
|
|
learning_engine_global = LearningEngine(r2_service_global, data_manager_global) |
|
|
await learning_engine_global.initialize_enhanced() |
|
|
state_manager.set_service_initialized('learning_engine') |
|
|
print(" ✅ محرك التعلم مهيأ") |
|
|
|
|
|
|
|
|
print(" 🔄 تهيئة مدير الصفقات...") |
|
|
trade_manager_global = TradeManager(r2_service_global, learning_engine_global, data_manager_global) |
|
|
state_manager.set_service_initialized('trade_manager') |
|
|
print(" ✅ مدير الصفقات مهيأ") |
|
|
|
|
|
print("🎯 اكتملت تهيئة جميع الخدمات بنجاح") |
|
|
return True |
|
|
|
|
|
except Exception as e: |
|
|
error_msg = f"فشل تهيئة الخدمات: {str(e)}" |
|
|
print(f"❌ {error_msg}") |
|
|
state_manager.set_initialization_error(error_msg) |
|
|
return False |
|
|
|
|
|
async def monitor_market_async(): |
|
|
"""مراقبة السوق""" |
|
|
global data_manager_global, sentiment_analyzer_global |
|
|
|
|
|
try: |
|
|
if not await state_manager.wait_for_initialization(): |
|
|
print("❌ فشل تهيئة الخدمات - إيقاف مراقبة السوق") |
|
|
return |
|
|
|
|
|
while True: |
|
|
try: |
|
|
async with state_manager.market_analysis_lock: |
|
|
market_context = await sentiment_analyzer_global.get_market_sentiment() |
|
|
if not market_context: |
|
|
state.MARKET_STATE_OK = True |
|
|
await asyncio.sleep(60) |
|
|
continue |
|
|
|
|
|
bitcoin_sentiment = market_context.get('btc_sentiment') |
|
|
fear_greed_index = market_context.get('fear_and_greed_index') |
|
|
|
|
|
should_halt_trading, halt_reason = False, "" |
|
|
|
|
|
if bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30): |
|
|
should_halt_trading, halt_reason = True, "ظروف سوق هابطة" |
|
|
|
|
|
if should_halt_trading: |
|
|
state.MARKET_STATE_OK = False |
|
|
await r2_service_global.save_system_logs_async({"market_halt": True, "reason": halt_reason}) |
|
|
else: |
|
|
if not state.MARKET_STATE_OK: |
|
|
print("✅ تحسنت ظروف السوق. استئناف العمليات العادية.") |
|
|
state.MARKET_STATE_OK = True |
|
|
|
|
|
await asyncio.sleep(60) |
|
|
except Exception as error: |
|
|
print(f"❌ خطأ أثناء مراقبة السوق: {error}") |
|
|
state.MARKET_STATE_OK = True |
|
|
await asyncio.sleep(60) |
|
|
except Exception as e: |
|
|
print(f"❌ فشل تشغيل مراقبة السوق: {e}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def process_batch_parallel(batch, ml_processor, batch_num, total_batches): |
|
|
"""معالجة دفعة من الرموز بشكل متوازي وإرجاع نتائج مفصلة""" |
|
|
try: |
|
|
print(f" 🔄 معالجة الدفعة {batch_num}/{total_batches} ({len(batch)} عملة)...") |
|
|
|
|
|
|
|
|
batch_tasks = [] |
|
|
for symbol_data in batch: |
|
|
task = asyncio.create_task(ml_processor.process_and_score_symbol_enhanced(symbol_data)) |
|
|
batch_tasks.append(task) |
|
|
|
|
|
|
|
|
batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
successful_results = [] |
|
|
low_score_results = [] |
|
|
failed_results = [] |
|
|
|
|
|
for i, result in enumerate(batch_results): |
|
|
symbol = batch[i].get('symbol', 'unknown') |
|
|
|
|
|
if isinstance(result, Exception): |
|
|
|
|
|
failed_results.append({"symbol": symbol, "error": f"Task Execution Error: {str(result)}"}) |
|
|
elif result is None: |
|
|
|
|
|
failed_results.append({"symbol": symbol, "error": "ML.py processing returned None (Check logs for internal error)"}) |
|
|
elif result.get('enhanced_final_score', 0) > 0.4: |
|
|
|
|
|
successful_results.append(result) |
|
|
else: |
|
|
|
|
|
low_score_results.append(result) |
|
|
|
|
|
print(f" ✅ اكتملت الدفعة {batch_num}: {len(successful_results)} نجاح | {len(low_score_results)} منخفض | {len(failed_results)} فشل") |
|
|
|
|
|
|
|
|
return { |
|
|
'success': successful_results, |
|
|
'low_score': low_score_results, |
|
|
'failures': failed_results |
|
|
} |
|
|
|
|
|
except Exception as error: |
|
|
print(f"❌ خطأ في معالجة الدفعة {batch_num}: {error}") |
|
|
|
|
|
return {'success': [], 'low_score': [], 'failures': []} |
|
|
|
|
|
async def run_3_layer_analysis(): |
|
|
""" |
|
|
تشغيل النظام الطبقي المكون من 3 طبقات: |
|
|
الطبقة 1: data_manager - الفحص السريع |
|
|
الطبقة 2: MLProcessor - التحليل المتقدم |
|
|
الطبقة 3: LLMService - النموذج الضخم |
|
|
""" |
|
|
|
|
|
|
|
|
layer1_candidates = [] |
|
|
layer2_candidates = [] |
|
|
all_low_score_candidates = [] |
|
|
all_failed_candidates = [] |
|
|
final_layer2_candidates = [] |
|
|
final_opportunities = [] |
|
|
|
|
|
try: |
|
|
print("🎯 بدء النظام الطبقي المكون من 3 طبقات...") |
|
|
|
|
|
if not await state_manager.wait_for_initialization(): |
|
|
print("❌ الخدمات غير مهيأة بالكامل") |
|
|
return None |
|
|
|
|
|
|
|
|
print("\n🔍 الطبقة 1: الفحص السريع (data_manager)...") |
|
|
layer1_candidates = await data_manager_global.layer1_rapid_screening() |
|
|
|
|
|
if not layer1_candidates: |
|
|
print("❌ لم يتم العثور على مرشحين في الطبقة 1") |
|
|
return None |
|
|
|
|
|
print(f"✅ تم اختيار {len(layer1_candidates)} عملة للطبقة 2") |
|
|
|
|
|
|
|
|
layer1_symbols = [candidate['symbol'] for candidate in layer1_candidates] |
|
|
ohlcv_data_list = await data_manager_global.get_ohlcv_data_for_symbols(layer1_symbols) |
|
|
|
|
|
if not ohlcv_data_list: |
|
|
print("❌ فشل جلب بيانات OHLCV للمرشحين") |
|
|
return None |
|
|
|
|
|
print(f"📊 تم جلب بيانات OHLCV لـ {len(ohlcv_data_list)} عملة بنجاح") |
|
|
|
|
|
|
|
|
print(f"\n📈 الطبقة 2: التحليل المتقدم (MLProcessor) بشكل متوازي لـ {len(ohlcv_data_list)} عملة...") |
|
|
market_context = await data_manager_global.get_market_context_async() |
|
|
|
|
|
|
|
|
ml_processor = MLProcessor(market_context, data_manager_global, learning_engine_global) |
|
|
|
|
|
|
|
|
layer2_data = [] |
|
|
for ohlcv_data in ohlcv_data_list: |
|
|
try: |
|
|
|
|
|
symbol = ohlcv_data['symbol'] |
|
|
layer1_candidate = next((c for c in layer1_candidates if c['symbol'] == symbol), None) |
|
|
if layer1_candidate: |
|
|
ohlcv_data['reasons_for_candidacy'] = layer1_candidate.get('reasons', []) |
|
|
ohlcv_data['layer1_score'] = layer1_candidate.get('layer1_score', 0) |
|
|
ohlcv_data['successful_timeframes'] = ohlcv_data.get('successful_timeframes', 0) |
|
|
|
|
|
layer2_data.append(ohlcv_data) |
|
|
|
|
|
except Exception as e: |
|
|
continue |
|
|
|
|
|
if not layer2_data: |
|
|
print("❌ فشل إعداد بيانات الطبقة 2") |
|
|
return None |
|
|
|
|
|
|
|
|
batch_size = 15 |
|
|
batches = [layer2_data[i:i + batch_size] for i in range(0, len(layer2_data), batch_size)] |
|
|
total_batches = len(batches) |
|
|
|
|
|
print(f" 🚀 تقسيم العمل إلى {total_batches} دفعة ({batch_size} عملة لكل دفعة)...") |
|
|
|
|
|
|
|
|
batch_tasks = [] |
|
|
for i, batch in enumerate(batches): |
|
|
task = asyncio.create_task(process_batch_parallel(batch, ml_processor, i+1, total_batches)) |
|
|
batch_tasks.append(task) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_results_list = await asyncio.gather(*batch_tasks) |
|
|
|
|
|
|
|
|
layer2_candidates = [] |
|
|
all_low_score_candidates = [] |
|
|
all_failed_candidates = [] |
|
|
|
|
|
for batch_result in batch_results_list: |
|
|
layer2_candidates.extend(batch_result['success']) |
|
|
all_low_score_candidates.extend(batch_result['low_score']) |
|
|
all_failed_candidates.extend(batch_result['failures']) |
|
|
|
|
|
print(f"✅ اكتمل التحليل المتقدم: {len(layer2_candidates)} نجاح (عالي) | {len(all_low_score_candidates)} نجاح (منخفض) | {len(all_failed_candidates)} فشل") |
|
|
|
|
|
if not layer2_candidates: |
|
|
print("❌ لم يتم العثور على مرشحين في الطبقة 2") |
|
|
|
|
|
|
|
|
|
|
|
layer2_candidates.sort(key=lambda x: x.get('enhanced_final_score', 0), reverse=True) |
|
|
target_count = min(10, len(layer2_candidates)) |
|
|
final_layer2_candidates = layer2_candidates[:target_count] |
|
|
|
|
|
print(f"🎯 تم اختيار {len(final_layer2_candidates)} عملة للطبقة 3 (الأقوى فقط)") |
|
|
|
|
|
|
|
|
await r2_service_global.save_candidates_async(final_layer2_candidates) |
|
|
|
|
|
|
|
|
print("\n🏆 أفضل 10 عملات من الطبقة 2:") |
|
|
for i, candidate in enumerate(final_layer2_candidates): |
|
|
score = candidate.get('enhanced_final_score', 0) |
|
|
strategy = candidate.get('target_strategy', 'GENERIC') |
|
|
mc_score = candidate.get('monte_carlo_probability', 0) |
|
|
pattern = candidate.get('pattern_analysis', {}).get('pattern_detected', 'no_pattern') |
|
|
timeframes = candidate.get('successful_timeframes', 0) |
|
|
|
|
|
print(f" {i+1}. {candidate['symbol']}:") |
|
|
print(f" 📊 النهائي: {score:.3f} | الأطر: {timeframes}/6") |
|
|
if mc_score > 0: |
|
|
print(f" 🎯 مونت كارلو: {mc_score:.3f}") |
|
|
print(f" 🎯 استراتيجية: {strategy} | نمط: {pattern}") |
|
|
|
|
|
|
|
|
print("\n🧠 الطبقة 3: التحليل بالنموذج الضخم (LLMService)...") |
|
|
final_opportunities = [] |
|
|
|
|
|
for candidate in final_layer2_candidates: |
|
|
try: |
|
|
symbol = candidate['symbol'] |
|
|
print(f" 🤔 تحليل {symbol} بالنموذج الضخم...") |
|
|
|
|
|
|
|
|
ohlcv_data = candidate.get('ohlcv') |
|
|
|
|
|
if not ohlcv_data: |
|
|
print(f" ⚠️ لا توجد بيانات شموع لـ {symbol}") |
|
|
|
|
|
symbol_ohlcv_list = await data_manager_global.get_ohlcv_data_for_symbols([symbol]) |
|
|
if symbol_ohlcv_list and len(symbol_ohlcv_list) > 0: |
|
|
ohlcv_data = symbol_ohlcv_list[0].get('ohlcv') |
|
|
candidate['ohlcv'] = ohlcv_data |
|
|
candidate['raw_ohlcv'] = ohlcv_data |
|
|
|
|
|
if not ohlcv_data: |
|
|
print(f" ⚠️ فشل جلب بيانات شموع لـ {symbol}") |
|
|
continue |
|
|
|
|
|
|
|
|
candidate['raw_ohlcv'] = ohlcv_data |
|
|
candidate['ohlcv'] = ohlcv_data |
|
|
|
|
|
|
|
|
timeframes_count = candidate.get('successful_timeframes', 0) |
|
|
total_candles = sum(len(data) for data in ohlcv_data.values()) if ohlcv_data else 0 |
|
|
|
|
|
if total_candles < 30: |
|
|
print(f" ⚠️ بيانات شموع غير كافية لـ {symbol}: {total_candles} شمعة فقط") |
|
|
continue |
|
|
|
|
|
print(f" 📊 إرسال {symbol} للنموذج: {total_candles} شمعة في {timeframes_count} إطار زمني") |
|
|
|
|
|
|
|
|
llm_analysis = await llm_service_global.get_trading_decision(candidate) |
|
|
|
|
|
|
|
|
if llm_analysis and llm_analysis.get('action') in ['BUY', 'SELL']: |
|
|
opportunity = { |
|
|
'symbol': symbol, |
|
|
'current_price': candidate.get('current_price', 0), |
|
|
'decision': llm_analysis, |
|
|
'enhanced_score': candidate.get('enhanced_final_score', 0), |
|
|
'llm_confidence': llm_analysis.get('confidence_level', 0), |
|
|
'strategy': llm_analysis.get('strategy', 'GENERIC'), |
|
|
'analysis_timestamp': datetime.now().isoformat(), |
|
|
'timeframes_count': timeframes_count, |
|
|
'total_candles': total_candles |
|
|
} |
|
|
final_opportunities.append(opportunity) |
|
|
|
|
|
print(f" ✅ {symbol}: {llm_analysis.get('action')} - ثقة: {llm_analysis.get('confidence_level', 0):.2f}") |
|
|
else: |
|
|
action = llm_analysis.get('action', 'NO_DECISION') if llm_analysis else 'NO_RESPONSE' |
|
|
print(f" ⚠️ {symbol}: لا يوجد قرار تداول من النموذج الضخم ({action})") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ خطأ في تحليل النموذج الضخم لـ {candidate.get('symbol')}: {e}") |
|
|
continue |
|
|
|
|
|
if final_opportunities: |
|
|
|
|
|
final_opportunities.sort(key=lambda x: (x['llm_confidence'] + x['enhanced_score']) / 2, reverse=True) |
|
|
|
|
|
print(f"\n🏆 النظام الطبقي اكتمل: {len(final_opportunities)} فرصة تداول") |
|
|
for i, opportunity in enumerate(final_opportunities[:5]): |
|
|
print(f" {i+1}. {opportunity['symbol']}: {opportunity['decision'].get('action')} - ثقة: {opportunity['llm_confidence']:.2f} - أطر: {opportunity['timeframes_count']}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
top_10_detailed_summary = [] |
|
|
for c in final_layer2_candidates: |
|
|
whale_summary = "Not Available" |
|
|
whale_data = c.get('whale_data') |
|
|
if whale_data and whale_data.get('data_available'): |
|
|
signal = whale_data.get('trading_signal', {}) |
|
|
action = signal.get('action', 'HOLD') |
|
|
confidence = signal.get('confidence', 0) |
|
|
reason_preview = signal.get('reason', 'N/A')[:75] + "..." if signal.get('reason') else 'N/A' |
|
|
whale_summary = f"Action: {action}, Conf: {confidence:.2f}, Alert: {signal.get('critical_alert', False)}, Reason: {reason_preview}" |
|
|
|
|
|
top_10_detailed_summary.append({ |
|
|
"symbol": c.get('symbol'), |
|
|
"score": c.get('enhanced_final_score', 0), |
|
|
"timeframes": f"{c.get('successful_timeframes', 'N/A')}/6", |
|
|
"whale_data_summary": whale_summary, |
|
|
"strategy": c.get('target_strategy', 'N/A'), |
|
|
"pattern": c.get('pattern_analysis', {}).get('pattern_detected', 'N/A'), |
|
|
}) |
|
|
|
|
|
|
|
|
other_successful_candidates = layer2_candidates[target_count:] |
|
|
other_success_summary = [ |
|
|
{ |
|
|
"symbol": c['symbol'], |
|
|
"score": c.get('enhanced_final_score', 0), |
|
|
"timeframes": f"{c.get('successful_timeframes', 'N/A')}/6", |
|
|
"whale_data": "Available" if c.get('whale_data', {}).get('data_available') else "Not Available" |
|
|
} |
|
|
for c in other_successful_candidates |
|
|
] |
|
|
|
|
|
|
|
|
low_score_summary = [ |
|
|
{ |
|
|
"symbol": c['symbol'], |
|
|
"score": c.get('enhanced_final_score', 0), |
|
|
"timeframes": f"{c.get('successful_timeframes', 'N/A')}/6", |
|
|
"whale_data": "Available" if c.get('whale_data', {}).get('data_available') else "Not Available" |
|
|
} |
|
|
for c in all_low_score_candidates |
|
|
] |
|
|
|
|
|
|
|
|
audit_data = { |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"total_layer1_candidates": len(layer1_candidates), |
|
|
"total_processed_in_layer2": len(layer2_candidates) + len(all_low_score_candidates) + len(all_failed_candidates), |
|
|
"counts": { |
|
|
"sent_to_llm": len(final_layer2_candidates), |
|
|
"success_not_top_10": len(other_successful_candidates), |
|
|
"success_low_score": len(all_low_score_candidates), |
|
|
"failures": len(all_failed_candidates) |
|
|
}, |
|
|
|
|
|
"top_candidates_for_llm": top_10_detailed_summary, |
|
|
"other_successful_candidates": other_success_summary, |
|
|
"low_score_candidates": low_score_summary, |
|
|
"failed_candidates": all_failed_candidates, |
|
|
} |
|
|
|
|
|
|
|
|
await r2_service_global.save_analysis_audit_log_async(audit_data) |
|
|
print(f"✅ تم حفظ سجل تدقيق التحليل في R2.") |
|
|
|
|
|
except Exception as audit_error: |
|
|
print(f"❌ فشل حفظ سجل تدقيق التحليل: {audit_error}") |
|
|
traceback.print_exc() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not final_opportunities: |
|
|
print("❌ لم يتم العثور على فرص تداول مناسبة") |
|
|
return None |
|
|
|
|
|
return final_opportunities[0] if final_opportunities else None |
|
|
|
|
|
except Exception as error: |
|
|
print(f"❌ خطأ في النظام الطبقي: {error}") |
|
|
traceback.print_exc() |
|
|
|
|
|
|
|
|
try: |
|
|
audit_data = { |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"status": "FAILED", |
|
|
"error": str(error), |
|
|
"traceback": traceback.format_exc(), |
|
|
"total_layer1_candidates": len(layer1_candidates), |
|
|
"counts": { |
|
|
"sent_to_llm": 0, |
|
|
"success_not_top_10": len(layer2_candidates[target_count:]) if 'target_count' in locals() else 0, |
|
|
"success_low_score": len(all_low_score_candidates), |
|
|
"failures": len(all_failed_candidates) |
|
|
}, |
|
|
"failed_candidates": all_failed_candidates |
|
|
} |
|
|
await r2_service_global.save_analysis_audit_log_async(audit_data) |
|
|
print("⚠️ تم حفظ سجل تدقيق جزئي بعد الفشل.") |
|
|
except Exception as audit_fail_error: |
|
|
print(f"❌ فشل حفظ سجل التدقيق أثناء معالجة خطأ آخر: {audit_fail_error}") |
|
|
|
|
|
return None |
|
|
|
|
|
async def re_analyze_open_trade_async(trade_data): |
|
|
"""إعادة تحليل الصفقة المفتوحة""" |
|
|
symbol = trade_data.get('symbol') |
|
|
try: |
|
|
async with state_manager.trade_analysis_lock: |
|
|
|
|
|
market_context = await data_manager_global.get_market_context_async() |
|
|
ohlcv_data_list = await data_manager_global.get_ohlcv_data_for_symbols([symbol]) |
|
|
|
|
|
if not ohlcv_data_list: |
|
|
return None |
|
|
|
|
|
ohlcv_data = ohlcv_data_list[0] |
|
|
ohlcv_data['reasons_for_candidacy'] = ['re-analysis'] |
|
|
|
|
|
|
|
|
ml_processor = MLProcessor(market_context, data_manager_global, learning_engine_global) |
|
|
processed_data = await ml_processor.process_and_score_symbol_enhanced(ohlcv_data) |
|
|
|
|
|
if not processed_data: |
|
|
return None |
|
|
|
|
|
|
|
|
processed_data['raw_ohlcv'] = ohlcv_data.get('raw_ohlcv') or ohlcv_data.get('ohlcv') |
|
|
processed_data['ohlcv'] = processed_data['raw_ohlcv'] |
|
|
|
|
|
|
|
|
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data) |
|
|
|
|
|
|
|
|
if re_analysis_decision: |
|
|
await r2_service_global.save_system_logs_async({ |
|
|
"trade_reanalyzed": True, |
|
|
"symbol": symbol, |
|
|
"action": re_analysis_decision.get('action'), |
|
|
'strategy': re_analysis_decision.get('strategy', 'GENERIC') |
|
|
}) |
|
|
|
|
|
return { |
|
|
"symbol": symbol, |
|
|
"decision": re_analysis_decision, |
|
|
"current_price": processed_data.get('current_price') |
|
|
} |
|
|
else: |
|
|
return None |
|
|
|
|
|
except Exception as error: |
|
|
await r2_service_global.save_system_logs_async({ |
|
|
"reanalysis_error": True, |
|
|
"symbol": symbol, |
|
|
"error": str(error) |
|
|
}) |
|
|
return None |
|
|
|
|
|
async def run_bot_cycle_async(): |
|
|
"""دورة التداول الرئيسية""" |
|
|
try: |
|
|
if not await state_manager.wait_for_initialization(): |
|
|
print("❌ الخدمات غير مهيأة بالكامل - تخطي الدورة") |
|
|
return |
|
|
|
|
|
print("🔄 بدء دورة التداول...") |
|
|
await r2_service_global.save_system_logs_async({"cycle_started": True}) |
|
|
|
|
|
if not r2_service_global.acquire_lock(): |
|
|
print("❌ فشل الحصول على القفل - تخطي الدورة") |
|
|
return |
|
|
|
|
|
try: |
|
|
open_trades = await trade_manager_global.get_open_trades() |
|
|
print(f"📋 الصفقات المفتوحة: {len(open_trades)}") |
|
|
|
|
|
should_look_for_new_trade = len(open_trades) == 0 |
|
|
|
|
|
|
|
|
if open_trades: |
|
|
now = datetime.now() |
|
|
trades_to_reanalyze = [ |
|
|
trade for trade in open_trades |
|
|
if now >= datetime.fromisoformat(trade.get('expected_target_time', now.isoformat())) |
|
|
] |
|
|
|
|
|
if trades_to_reanalyze: |
|
|
print(f"🔄 إعادة تحليل {len(trades_to_reanalyze)} صفقة") |
|
|
for trade in trades_to_reanalyze: |
|
|
result = await re_analyze_open_trade_async(trade) |
|
|
if result and result['decision'].get('action') == "CLOSE_TRADE": |
|
|
await trade_manager_global.close_trade(trade, result['current_price'], 'CLOSED_BY_REANALYSIS') |
|
|
should_look_for_new_trade = True |
|
|
elif result and result['decision'].get('action') == "UPDATE_TRADE": |
|
|
await trade_manager_global.update_trade(trade, result['decision']) |
|
|
|
|
|
|
|
|
if should_look_for_new_trade: |
|
|
portfolio_state = await r2_service_global.get_portfolio_state_async() |
|
|
current_capital = portfolio_state.get("current_capital_usd", 0) |
|
|
|
|
|
if current_capital > 1: |
|
|
print("🎯 البحث عن فرص تداول جديدة...") |
|
|
best_opportunity = await run_3_layer_analysis() |
|
|
|
|
|
if best_opportunity: |
|
|
print(f"✅ فتح صفقة جديدة: {best_opportunity['symbol']}") |
|
|
await trade_manager_global.open_trade( |
|
|
best_opportunity['symbol'], |
|
|
best_opportunity['decision'], |
|
|
best_opportunity['current_price'] |
|
|
) |
|
|
else: |
|
|
print("❌ لم يتم العثور على فرص تداول مناسبة") |
|
|
else: |
|
|
print("❌ رأس المال غير كافي لفتح صفقات جديدة") |
|
|
|
|
|
finally: |
|
|
r2_service_global.release_lock() |
|
|
await r2_service_global.save_system_logs_async({ |
|
|
"cycle_completed": True, |
|
|
"open_trades": len(open_trades) if 'open_trades' in locals() else 0 |
|
|
}) |
|
|
print("✅ اكتملت دورة التداول") |
|
|
|
|
|
except Exception as error: |
|
|
print(f"❌ Unhandled error in main cycle: {error}") |
|
|
await r2_service_global.save_system_logs_async({ |
|
|
"cycle_error": True, |
|
|
"error": str(error) |
|
|
}) |
|
|
if r2_service_global.lock_acquired: |
|
|
r2_service_global.release_lock() |
|
|
|
|
|
@asynccontextmanager |
|
|
async def lifespan(application: FastAPI): |
|
|
"""إدارة دورة حياة التطبيق""" |
|
|
print("🚀 بدء تهيئة التطبيق...") |
|
|
|
|
|
try: |
|
|
|
|
|
success = await initialize_services() |
|
|
if not success: |
|
|
print("❌ فشل تهيئة التطبيق - إغلاق...") |
|
|
yield |
|
|
return |
|
|
|
|
|
|
|
|
asyncio.create_task(monitor_market_async()) |
|
|
asyncio.create_task(trade_manager_global.start_trade_monitoring()) |
|
|
|
|
|
await r2_service_global.save_system_logs_async({"application_started": True}) |
|
|
print("🎯 التطبيق جاهز للعمل - نظام الطبقات 3 فعال") |
|
|
|
|
|
yield |
|
|
|
|
|
except Exception as error: |
|
|
print(f"❌ Application startup failed: {error}") |
|
|
traceback.print_exc() |
|
|
if r2_service_global: |
|
|
await r2_service_global.save_system_logs_async({ |
|
|
"application_startup_failed": True, |
|
|
"error": str(error) |
|
|
}) |
|
|
raise |
|
|
finally: |
|
|
await cleanup_on_shutdown() |
|
|
|
|
|
application = FastAPI( |
|
|
lifespan=lifespan, |
|
|
title="AI Trading Bot", |
|
|
description="نظام تداول ذكي بثلاث طبقات تحليلية", |
|
|
version="3.0.0" |
|
|
) |
|
|
|
|
|
@application.get("/") |
|
|
async def root(): |
|
|
"""الصفحة الرئيسية""" |
|
|
return { |
|
|
"message": "مرحباً بك في نظام التداول الذكي", |
|
|
"system": "3-Layer Analysis System", |
|
|
"status": "running" if state_manager.initialization_complete else "initializing", |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
|
|
|
@application.get("/run-cycle") |
|
|
async def run_cycle_api(): |
|
|
"""تشغيل دورة التداول""" |
|
|
if not state_manager.initialization_complete: |
|
|
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل") |
|
|
asyncio.create_task(run_bot_cycle_async()) |
|
|
return {"message": "Bot cycle initiated", "system": "3-Layer Analysis"} |
|
|
|
|
|
@application.get("/health") |
|
|
async def health_check(): |
|
|
"""فحص صحة النظام""" |
|
|
services_status = { |
|
|
"status": "healthy" if state_manager.initialization_complete else "initializing", |
|
|
"initialization_complete": state_manager.initialization_complete, |
|
|
"services_initialized": state_manager.services_initialized, |
|
|
"initialization_error": state_manager.initialization_error, |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"system_architecture": "3-Layer Analysis System", |
|
|
"layers": { |
|
|
"layer1": "Data Manager - Rapid Screening", |
|
|
"layer2": "ML Processor - Advanced Analysis", |
|
|
"layer3": "LLM Service - Deep Analysis" |
|
|
} |
|
|
} |
|
|
return services_status |
|
|
|
|
|
@application.get("/analyze-market") |
|
|
async def analyze_market_api(): |
|
|
"""تشغيل التحليل الطبقي فقط""" |
|
|
if not state_manager.initialization_complete: |
|
|
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل") |
|
|
|
|
|
result = await run_3_layer_analysis() |
|
|
if result: |
|
|
return { |
|
|
"opportunity_found": True, |
|
|
"symbol": result['symbol'], |
|
|
"action": result['decision'].get('action'), |
|
|
"confidence": result['llm_confidence'], |
|
|
"strategy": result['strategy'] |
|
|
} |
|
|
else: |
|
|
return {"opportunity_found": False, "message": "No suitable opportunities found"} |
|
|
|
|
|
@application.get("/portfolio") |
|
|
async def get_portfolio_api(): |
|
|
"""الحصول على حالة المحفظة""" |
|
|
if not state_manager.initialization_complete: |
|
|
raise HTTPException(status_code=503, detail="الخدمات غير مهيأة بالكامل") |
|
|
|
|
|
try: |
|
|
portfolio_state = await r2_service_global.get_portfolio_state_async() |
|
|
open_trades = await trade_manager_global.get_open_trades() |
|
|
|
|
|
return { |
|
|
"portfolio": portfolio_state, |
|
|
"open_trades": open_trades, |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=f"خطأ في جلب بيانات المحفظة: {str(e)}") |
|
|
|
|
|
@application.get("/system-status") |
|
|
async def get_system_status(): |
|
|
"""الحصول على حالة النظام التفصيلية""" |
|
|
monitoring_status = trade_manager_global.get_monitoring_status() if trade_manager_global else {} |
|
|
|
|
|
return { |
|
|
"initialization_complete": state_manager.initialization_complete, |
|
|
"services_initialized": state_manager.services_initialized, |
|
|
"initialization_error": state_manager.initialization_error, |
|
|
"market_state_ok": state.MARKET_STATE_OK, |
|
|
"monitoring_status": monitoring_status, |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
|
|
|
async def cleanup_on_shutdown(): |
|
|
"""تنظيف الموارد عند الإغلاق""" |
|
|
global r2_service_global, data_manager_global, trade_manager_global, learning_engine_global |
|
|
|
|
|
print("🛑 Shutdown signal received. Cleaning up...") |
|
|
|
|
|
if trade_manager_global: |
|
|
trade_manager_global.stop_monitoring() |
|
|
print("✅ Trade monitoring stopped") |
|
|
|
|
|
if learning_engine_global and learning_engine_global.initialized: |
|
|
try: |
|
|
await learning_engine_global.save_weights_to_r2() |
|
|
await learning_engine_global.save_performance_history() |
|
|
print("✅ Learning engine data saved") |
|
|
except Exception as e: |
|
|
print(f"❌ Failed to save learning engine data: {e}") |
|
|
|
|
|
if data_manager_global: |
|
|
await data_manager_global.close() |
|
|
print("✅ Data manager closed") |
|
|
|
|
|
if r2_service_global: |
|
|
try: |
|
|
await r2_service_global.save_system_logs_async({"application_shutdown": True}) |
|
|
print("✅ Shutdown log saved") |
|
|
except Exception as e: |
|
|
print(f"❌ Failed to save shutdown log: {e}") |
|
|
|
|
|
if r2_service_global.lock_acquired: |
|
|
r2_service_global.release_lock() |
|
|
print("✅ R2 lock released") |
|
|
|
|
|
def signal_handler(signum, frame): |
|
|
"""معالج إشارات الإغلاق""" |
|
|
print(f"🛑 Received signal {signum}. Initiating shutdown...") |
|
|
asyncio.create_task(cleanup_on_shutdown()) |
|
|
sys.exit(0) |
|
|
|
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler) |
|
|
signal.signal(signal.SIGTERM, signal_handler) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("🚀 Starting AI Trading Bot with 3-Layer Analysis System...") |
|
|
uvicorn.run( |
|
|
application, |
|
|
host="0.0.0.0", |
|
|
port=7860, |
|
|
log_level="info", |
|
|
access_log=True |
|
|
) |