| import os, json, asyncio | |
| from datetime import datetime | |
| from helpers import normalize_weights, calculate_market_volatility, should_update_weights | |
| class LearningEngine: | |
| def __init__(self, r2_service, data_manager): | |
| self.r2_service = r2_service | |
| self.data_manager = data_manager | |
| self.weights = {} | |
| self.performance_history = [] | |
| self.strategy_effectiveness = {} | |
| self.market_patterns = {} | |
| self.risk_profiles = {} | |
| self.initialized = False | |
| self.initialization_lock = asyncio.Lock() | |
| async def initialize(self): | |
| async with self.initialization_lock: | |
| if self.initialized: return | |
| print("Initializing learning system...") | |
| try: | |
| await self.load_weights_from_r2() | |
| await self.load_performance_history() | |
| self.initialized = True | |
| print("Learning system ready") | |
| except Exception as e: | |
| print(f"Weights loading failed: {e}") | |
| await self.initialize_default_weights() | |
| self.initialized = True | |
| async def initialize_enhanced(self): | |
| async with self.initialization_lock: | |
| if self.initialized: return | |
| print("Enhanced learning system initialization...") | |
| try: | |
| await self.load_weights_from_r2() | |
| await self.load_performance_history() | |
| await self.fix_weights_structure() | |
| if not self.performance_history: | |
| print("Starting learning from scratch") | |
| await self.initialize_default_weights() | |
| self.initialized = True | |
| except Exception as e: | |
| print(f"Enhanced initialization failed: {e}") | |
| await self.initialize_default_weights() | |
| self.initialized = True | |
| async def fix_weights_structure(self): | |
| try: | |
| key = "learning_engine_weights.json" | |
| response = self.r2_service.s3_client.get_object(Bucket="trading", Key=key) | |
| current_data = json.loads(response['Body'].read()) | |
| if 'strategy_weights' in current_data and 'last_updated' not in current_data: | |
| fixed_data = { | |
| "weights": current_data, | |
| "last_updated": datetime.now().isoformat(), | |
| "version": "2.0", | |
| "performance_metrics": await self.calculate_performance_metrics() | |
| } | |
| data_json = json.dumps(fixed_data, indent=2, ensure_ascii=False).encode('utf-8') | |
| self.r2_service.s3_client.put_object( | |
| Bucket="trading", Key=key, Body=data_json, ContentType="application/json" | |
| ) | |
| print("Weights structure fixed") | |
| except Exception as e: | |
| print(f"Weights structure fix failed: {e}") | |
| async def initialize_default_weights(self): | |
| self.weights = { | |
| "strategy_weights": { | |
| "trend_following": 0.18, "mean_reversion": 0.15, "breakout_momentum": 0.22, | |
| "volume_spike": 0.12, "whale_tracking": 0.15, "pattern_recognition": 0.10, | |
| "hybrid_ai": 0.08 | |
| }, | |
| "technical_weights": { | |
| "rsi": 0.15, "macd": 0.18, "ema_cross": 0.12, "bollinger_bands": 0.10, | |
| "volume_analysis": 0.15, "support_resistance": 0.12, "market_sentiment": 0.18 | |
| }, | |
| "risk_parameters": { | |
| "max_position_size": 0.1, "max_daily_loss": 0.02, "stop_loss_base": 0.02, | |
| "risk_reward_ratio": 2.0, "volatility_adjustment": 1.0 | |
| }, | |
| "market_condition_weights": { | |
| "bull_market": {"trend_following": 0.25, "breakout_momentum": 0.20, "whale_tracking": 0.15}, | |
| "bear_market": {"mean_reversion": 0.25, "pattern_recognition": 0.20, "hybrid_ai": 0.15}, | |
| "sideways_market": {"mean_reversion": 0.30, "volume_spike": 0.20, "pattern_recognition": 0.15} | |
| } | |
| } | |
| async def load_weights_from_r2(self): | |
| try: | |
| key = "learning_engine_weights.json" | |
| response = self.r2_service.s3_client.get_object(Bucket="trading", Key=key) | |
| weights_data = json.loads(response['Body'].read()) | |
| if isinstance(weights_data, dict): | |
| if 'weights' in weights_data: | |
| self.weights = weights_data['weights'] | |
| else: | |
| self.weights = weights_data | |
| print(f"Weights loaded from R2") | |
| else: | |
| raise ValueError("Invalid weights structure") | |
| except Exception as e: | |
| print(f"Weights loading failed: {e}") | |
| await self.initialize_default_weights() | |
| await self.save_weights_to_r2() | |
| async def save_weights_to_r2(self): | |
| try: | |
| key = "learning_engine_weights.json" | |
| weights_data = { | |
| "weights": self.weights, | |
| "last_updated": datetime.now().isoformat(), | |
| "version": "2.0", | |
| "performance_metrics": await self.calculate_performance_metrics() | |
| } | |
| data_json = json.dumps(weights_data, indent=2, ensure_ascii=False).encode('utf-8') | |
| self.r2_service.s3_client.put_object( | |
| Bucket="trading", Key=key, Body=data_json, ContentType="application/json" | |
| ) | |
| print("Weights saved to R2") | |
| except Exception as e: | |
| print(f"Weights saving failed: {e}") | |
| async def load_performance_history(self): | |
| try: | |
| key = "learning_performance_history.json" | |
| response = self.r2_service.s3_client.get_object(Bucket="trading", Key=key) | |
| history_data = json.loads(response['Body'].read()) | |
| self.performance_history = history_data.get("history", []) | |
| print(f"Performance history loaded - {len(self.performance_history)} records") | |
| except Exception as e: | |
| print(f"Performance history loading failed: {e}") | |
| self.performance_history = [] | |
| async def save_performance_history(self): | |
| try: | |
| key = "learning_performance_history.json" | |
| history_data = { | |
| "history": self.performance_history[-1000:], | |
| "last_updated": datetime.now().isoformat() | |
| } | |
| data_json = json.dumps(history_data, indent=2, ensure_ascii=False).encode('utf-8') | |
| self.r2_service.s3_client.put_object( | |
| Bucket="trading", Key=key, Body=data_json, ContentType="application/json" | |
| ) | |
| except Exception as e: | |
| print(f"Performance history saving failed: {e}") | |
| async def analyze_trade_outcome(self, trade_data, outcome): | |
| if not self.initialized: await self.initialize() | |
| try: | |
| strategy = trade_data.get('strategy', 'unknown') | |
| if strategy == 'unknown': | |
| decision_data = trade_data.get('decision_data', {}) | |
| strategy = decision_data.get('strategy', 'unknown') | |
| market_context = await self.get_current_market_conditions() | |
| analysis_entry = { | |
| "timestamp": datetime.now().isoformat(), | |
| "trade_data": trade_data, | |
| "outcome": outcome, | |
| "market_conditions": market_context, | |
| "strategy_used": strategy, | |
| "symbol": trade_data.get('symbol', 'unknown'), | |
| "pnl_usd": trade_data.get('pnl_usd', 0), | |
| "pnl_percent": trade_data.get('pnl_percent', 0) | |
| } | |
| self.performance_history.append(analysis_entry) | |
| await self.update_strategy_effectiveness(analysis_entry) | |
| await self.update_market_patterns(analysis_entry) | |
| if should_update_weights(len(self.performance_history)): | |
| await self.adapt_weights_based_on_performance() | |
| await self.save_weights_to_r2() | |
| await self.save_performance_history() | |
| print(f"Trade analyzed {trade_data.get('symbol')} - Strategy: {strategy} - Outcome: {outcome}") | |
| except Exception as e: | |
| print(f"Trade outcome analysis failed: {e}") | |
| async def update_strategy_effectiveness(self, analysis_entry): | |
| strategy = analysis_entry['strategy_used'] | |
| outcome = analysis_entry['outcome'] | |
| market_condition = analysis_entry['market_conditions']['current_trend'] | |
| pnl_percent = analysis_entry.get('pnl_percent', 0) | |
| if strategy not in self.strategy_effectiveness: | |
| self.strategy_effectiveness[strategy] = { | |
| "total_trades": 0, "successful_trades": 0, "total_profit": 0, | |
| "total_pnl_percent": 0, "market_conditions": {} | |
| } | |
| self.strategy_effectiveness[strategy]["total_trades"] += 1 | |
| self.strategy_effectiveness[strategy]["total_pnl_percent"] += pnl_percent | |
| is_success = outcome in ["SUCCESS", "CLOSED_BY_REANALYSIS", "CLOSED_BY_MONITOR"] and pnl_percent > 0 | |
| if is_success: self.strategy_effectiveness[strategy]["successful_trades"] += 1 | |
| if market_condition not in self.strategy_effectiveness[strategy]["market_conditions"]: | |
| self.strategy_effectiveness[strategy]["market_conditions"][market_condition] = { | |
| "trades": 0, "successes": 0, "total_pnl": 0 | |
| } | |
| self.strategy_effectiveness[strategy]["market_conditions"][market_condition]["trades"] += 1 | |
| self.strategy_effectiveness[strategy]["market_conditions"][market_condition]["total_pnl"] += pnl_percent | |
| if is_success: self.strategy_effectiveness[strategy]["market_conditions"][market_condition]["successes"] += 1 | |
| async def update_market_patterns(self, analysis_entry): | |
| market_condition = analysis_entry['market_conditions']['current_trend'] | |
| symbol = analysis_entry['symbol'] | |
| outcome = analysis_entry['outcome'] | |
| pnl_percent = analysis_entry.get('pnl_percent', 0) | |
| if market_condition not in self.market_patterns: | |
| self.market_patterns[market_condition] = { | |
| "total_trades": 0, "successful_trades": 0, "total_pnl_percent": 0, | |
| "best_performing_strategies": {}, "best_performing_symbols": {} | |
| } | |
| self.market_patterns[market_condition]["total_trades"] += 1 | |
| self.market_patterns[market_condition]["total_pnl_percent"] += pnl_percent | |
| is_success = outcome in ["SUCCESS", "CLOSED_BY_REANALYSIS", "CLOSED_BY_MONITOR"] and pnl_percent > 0 | |
| if is_success: self.market_patterns[market_condition]["successful_trades"] += 1 | |
| strategy = analysis_entry['strategy_used'] | |
| if strategy not in self.market_patterns[market_condition]["best_performing_strategies"]: | |
| self.market_patterns[market_condition]["best_performing_strategies"][strategy] = { | |
| "count": 0, "total_pnl": 0 | |
| } | |
| self.market_patterns[market_condition]["best_performing_strategies"][strategy]["count"] += 1 | |
| self.market_patterns[market_condition]["best_performing_strategies"][strategy]["total_pnl"] += pnl_percent | |
| if symbol not in self.market_patterns[market_condition]["best_performing_symbols"]: | |
| self.market_patterns[market_condition]["best_performing_symbols"][symbol] = { | |
| "count": 0, "total_pnl": 0 | |
| } | |
| self.market_patterns[market_condition]["best_performing_symbols"][symbol]["count"] += 1 | |
| self.market_patterns[market_condition]["best_performing_symbols"][symbol]["total_pnl"] += pnl_percent | |
| async def adapt_weights_based_on_performance(self): | |
| print("Updating weights based on performance...") | |
| try: | |
| if not self.strategy_effectiveness: | |
| print("Insufficient performance data, using gradual adjustment") | |
| await self.gradual_weights_adjustment() | |
| return | |
| total_performance = 0 | |
| strategy_performance = {} | |
| for strategy, data in self.strategy_effectiveness.items(): | |
| if data["total_trades"] > 0: | |
| success_rate = data["successful_trades"] / data["total_trades"] | |
| avg_pnl = data["total_pnl_percent"] / data["total_trades"] | |
| composite_performance = (success_rate * 0.7) + (min(avg_pnl, 10) / 10 * 0.3) | |
| strategy_performance[strategy] = composite_performance | |
| total_performance += composite_performance | |
| if total_performance > 0 and strategy_performance: | |
| for strategy, performance in strategy_performance.items(): | |
| current_weight = self.weights["strategy_weights"].get(strategy, 0.1) | |
| new_weight = current_weight * 0.7 + (performance * 0.3) | |
| self.weights["strategy_weights"][strategy] = new_weight | |
| normalize_weights(self.weights["strategy_weights"]) | |
| print("Weights updated based on real performance") | |
| else: | |
| await self.gradual_weights_adjustment() | |
| except Exception as e: | |
| print(f"Weights update failed: {e}") | |
| await self.gradual_weights_adjustment() | |
| async def gradual_weights_adjustment(self): | |
| print("Gradual weights adjustment...") | |
| if self.market_patterns: | |
| for market_condition, data in self.market_patterns.items(): | |
| if data.get("total_trades", 0) > 0: | |
| best_strategy = max(data["best_performing_strategies"].items(), | |
| key=lambda x: x[1]["total_pnl"])[0] if data["best_performing_strategies"] else None | |
| if best_strategy: | |
| current_weight = self.weights["strategy_weights"].get(best_strategy, 0.1) | |
| self.weights["strategy_weights"][best_strategy] = min(current_weight * 1.1, 0.3) | |
| normalize_weights(self.weights["strategy_weights"]) | |
| print("Gradual weights adjustment completed") | |
| async def get_current_market_conditions(self): | |
| try: | |
| if not self.data_manager: raise ValueError("DataManager unavailable") | |
| market_context = await self.data_manager.get_market_context_async() | |
| if not market_context: raise ValueError("Market context fetch failed") | |
| return { | |
| "current_trend": market_context.get('market_trend', 'sideways_market'), | |
| "volatility": calculate_market_volatility(market_context), | |
| "market_sentiment": market_context.get('btc_sentiment', 'NEUTRAL'), | |
| "whale_activity": market_context.get('general_whale_activity', {}).get('sentiment', 'NEUTRAL'), | |
| "fear_greed_index": market_context.get('fear_and_greed_index', 50) | |
| } | |
| except Exception as e: | |
| print(f"Market conditions fetch failed: {e}") | |
| return { | |
| "current_trend": "sideways_market", "volatility": "medium", | |
| "market_sentiment": "neutral", "whale_activity": "low", "fear_greed_index": 50 | |
| } | |
| async def calculate_performance_metrics(self): | |
| if not self.performance_history: return {"status": "No performance data yet"} | |
| recent_trades = self.performance_history[-50:] | |
| total_trades = len(recent_trades) | |
| successful_trades = sum(1 for trade in recent_trades | |
| if trade['outcome'] in ["SUCCESS", "CLOSED_BY_REANALYSIS", "CLOSED_BY_MONITOR"] and trade.get('pnl_percent', 0) > 0) | |
| success_rate = successful_trades / total_trades if total_trades > 0 else 0 | |
| total_pnl = sum(trade.get('pnl_percent', 0) for trade in recent_trades) | |
| avg_pnl = total_pnl / total_trades if total_trades > 0 else 0 | |
| strategy_performance = {} | |
| for strategy, data in self.strategy_effectiveness.items(): | |
| if data["total_trades"] > 0: | |
| strategy_success_rate = data["successful_trades"] / data["total_trades"] | |
| strategy_avg_pnl = data["total_pnl_percent"] / data["total_trades"] | |
| strategy_performance[strategy] = { | |
| "success_rate": strategy_success_rate, "avg_pnl_percent": strategy_avg_pnl, | |
| "total_trades": data["total_trades"], "successful_trades": data["successful_trades"] | |
| } | |
| market_performance = {} | |
| for condition, data in self.market_patterns.items(): | |
| if data["total_trades"] > 0: | |
| market_success_rate = data["successful_trades"] / data["total_trades"] | |
| market_avg_pnl = data["total_pnl_percent"] / data["total_trades"] | |
| market_performance[condition] = { | |
| "success_rate": market_success_rate, "avg_pnl_percent": market_avg_pnl, | |
| "total_trades": data["total_trades"] | |
| } | |
| return { | |
| "overall_success_rate": success_rate, "overall_avg_pnl_percent": avg_pnl, | |
| "total_analyzed_trades": len(self.performance_history), "recent_trades_analyzed": total_trades, | |
| "strategy_performance": strategy_performance, "market_performance": market_performance, | |
| "last_updated": datetime.now().isoformat() | |
| } | |
| async def get_optimized_strategy_weights(self, market_condition): | |
| try: | |
| if not self.initialized: return await self.get_default_strategy_weights() | |
| if (not self.weights or "strategy_weights" not in self.weights or not self.weights["strategy_weights"]): | |
| return await self.get_default_strategy_weights() | |
| base_weights = self.weights["strategy_weights"].copy() | |
| if not any(weight > 0 for weight in base_weights.values()): | |
| return await self.get_default_strategy_weights() | |
| print(f"Using learned weights: {base_weights}") | |
| return base_weights | |
| except Exception as e: | |
| print(f"Optimized weights calculation failed: {e}") | |
| return await self.get_default_strategy_weights() | |
| async def get_default_strategy_weights(self): | |
| return { | |
| "trend_following": 0.18, "mean_reversion": 0.15, "breakout_momentum": 0.22, | |
| "volume_spike": 0.12, "whale_tracking": 0.15, "pattern_recognition": 0.10, | |
| "hybrid_ai": 0.08 | |
| } | |
| async def get_risk_parameters(self, symbol_volatility): | |
| if not self.weights or "risk_parameters" not in self.weights: await self.initialize_default_weights() | |
| risk_params = self.weights.get("risk_parameters", {}).copy() | |
| if symbol_volatility == "HIGH": | |
| risk_params["stop_loss_base"] *= 1.5 | |
| risk_params["max_position_size"] *= 0.7 | |
| risk_params["risk_reward_ratio"] = 1.5 | |
| elif symbol_volatility == "LOW": | |
| risk_params["stop_loss_base"] *= 0.7 | |
| risk_params["max_position_size"] *= 1.2 | |
| risk_params["risk_reward_ratio"] = 2.5 | |
| return risk_params | |
| async def suggest_improvements(self): | |
| improvements = [] | |
| if not self.performance_history: | |
| improvements.append("Start collecting performance data from first trades") | |
| return improvements | |
| for strategy, data in self.strategy_effectiveness.items(): | |
| if data["total_trades"] >= 3: | |
| success_rate = data["successful_trades"] / data["total_trades"] | |
| avg_pnl = data["total_pnl_percent"] / data["total_trades"] | |
| if success_rate < 0.3 and avg_pnl < 0: | |
| improvements.append(f"Strategy {strategy} poor performance ({success_rate:.1%} success, {avg_pnl:+.1f}% average) - suggest reducing usage") | |
| elif success_rate > 0.6 and avg_pnl > 2: | |
| improvements.append(f"Strategy {strategy} excellent performance ({success_rate:.1%} success, {avg_pnl:+.1f}% average) - suggest increasing usage") | |
| elif success_rate > 0.7: | |
| improvements.append(f"Strategy {strategy} high success ({success_rate:.1%}) - focus on trade quality") | |
| for market_condition, data in self.market_patterns.items(): | |
| if data["total_trades"] >= 5: | |
| success_rate = data["successful_trades"] / data["total_trades"] | |
| avg_pnl = data["total_pnl_percent"] / data["total_trades"] | |
| if success_rate < 0.4: | |
| improvements.append(f"Poor performance in {market_condition} market ({success_rate:.1%} success) - needs strategy review") | |
| best_strategy = None | |
| best_performance = -100 | |
| for strategy, stats in data["best_performing_strategies"].items(): | |
| if stats["count"] >= 2: | |
| strategy_avg_pnl = stats["total_pnl"] / stats["count"] | |
| if strategy_avg_pnl > best_performance: | |
| best_performance = strategy_avg_pnl | |
| best_strategy = strategy | |
| if best_strategy and best_performance > 1: | |
| improvements.append(f"Best strategy in {market_condition}: {best_strategy} ({best_performance:+.1f}% average profit)") | |
| if not improvements: improvements.append("No suggested improvements currently - continue data collection") | |
| return improvements | |
| async def force_strategy_learning(self): | |
| print("Forcing strategy update from current data...") | |
| if not self.performance_history: | |
| print("No performance data to learn from") | |
| return | |
| for entry in self.performance_history: | |
| await self.update_strategy_effectiveness(entry) | |
| await self.update_market_patterns(entry) | |
| await self.adapt_weights_based_on_performance() | |
| await self.save_weights_to_r2() | |
| print("Strategy update forced successfully") | |
| print("Enhanced self-learning system loaded - ready for continuous learning and adaptation") |