Trad / learning_hub /reflector.py
Riy777's picture
Update learning_hub/reflector.py
6582766 verified
# learning_hub/reflector.py
# (محدث بالكامل - V2 - تمرير الأخبار للتعلم السريع)
import json
import traceback
from typing import Dict, Any, TYPE_CHECKING
from .schemas import TraceLog, ReflectorOutput
from .memory_store import MemoryStore
# (استخدام TYPE_CHECKING لتجنب الاستيراد الدائري الفعلي)
if TYPE_CHECKING:
from LLM import LLMService
class Reflector:
def __init__(self, llm_service: 'LLMService', memory_store: MemoryStore):
self.llm_service = llm_service
self.memory_store = memory_store
print("✅ Learning Hub Module: Reflector (Fast-Learner) loaded")
async def analyze_trade_outcome(self, trade_object: Dict[str, Any], close_reason: str):
"""
Analyzes the trade outcome using LLM to generate a learning 'Delta' (rule).
(Implements Point 2 & 4 of the 16-point plan)
"""
try:
# 1. Create the TraceLog
# (Note: We assume TradeManager now saves 'market_context_at_decision',
# 'indicators_at_decision', 'news_text', and 'news_score'
# inside 'decision_data' when opening the trade)
decision_data = trade_object.get('decision_data', {})
trace_log = TraceLog(
decision_context=decision_data,
market_context_at_decision=decision_data.get('market_context_at_decision', {}),
indicators_at_decision=decision_data.get('indicators_at_decision', {}),
closed_trade_object=trade_object,
actual_outcome_reason=close_reason
)
# 2. Create the Reflector Prompt (Now in English)
# 🔴 --- START OF CHANGE (V2 - News Learning) --- 🔴
# (تمرير بيانات الأخبار (التي يفترض أنها في decision_data) إلى الـ prompt)
news_text_at_decision = decision_data.get('news_text', 'No news data available at decision time.')
news_score_at_decision = decision_data.get('news_score', 0.0) # (VADER raw score)
prompt = self._create_reflector_prompt(
trace_log,
news_text_at_decision,
news_score_at_decision
)
# 🔴 --- END OF CHANGE --- 🔴
# 3. Call the LLM
response_text = await self.llm_service._call_llm(prompt)
if not response_text:
raise ValueError("Reflector LLM call returned no response.")
# 4. Parse the response
# (We use the enhanced parser from LLM.py which handles JSON)
reflector_json = self.llm_service._parse_llm_response_enhanced(
response_text,
fallback_strategy="reflection",
symbol=trade_object.get('symbol', 'N/A')
)
if not reflector_json:
raise ValueError(f"Failed to parse Reflector LLM response: {response_text}")
# (Validate against the strict schema from schemas.py)
reflector_output = ReflectorOutput(**reflector_json)
# 5. Determine the 'Domain' for the Delta
strategy = trade_object.get('strategy', 'general')
domain = self._determine_domain(strategy, reflector_output.error_mode)
# 6. Save the suggested 'Delta' to the Memory Store
# (MemoryStore will use PolicyEngine to decide on auto-approval)
await self.memory_store.save_new_delta(
reflector_output=reflector_output,
trade_object=trade_object,
domain=domain
)
print(f"✅ [Reflector] Successfully analyzed {trade_object.get('symbol')}. New Delta created.")
except Exception as e:
print(f"❌ [Reflector] Failed to analyze trade outcome for {trade_object.get('symbol')}: {e}")
traceback.print_exc()
def _determine_domain(self, strategy: str, error_mode: str) -> str:
"""Determines the domain the suggested Delta belongs to."""
error_mode = error_mode.lower()
if "pattern" in error_mode or "triangle" in error_mode or "flag" in error_mode:
return "pattern"
if "indicator" in error_mode or "rsi" in error_mode or "macd" in error_mode:
return "indicator"
if "monte_carlo" in error_mode or "garch" in error_mode or "simulation" in error_mode:
return "monte_carlo"
# 🔴 --- START OF CHANGE (V2 - News Learning) --- 🔴
if "news" in error_mode or "sentiment" in error_mode or "sec" in error_mode:
return "general" # (أو يمكننا إنشاء مجال "news" جديد)
# 🔴 --- END OF CHANGE --- 🔴
if "strategy" in error_mode or "exit" in error_mode or "entry" in error_mode:
return "strategy"
# Default to the strategy's domain
if strategy in ["trend_following", "mean_reversion", "breakout_momentum"]:
return "strategy"
return "general"
# 🔴 --- START OF CHANGE (V2 - News Learning) --- 🔴
def _create_reflector_prompt(
self,
trace_log: TraceLog,
news_text: str,
news_score: float
) -> str:
# 🔴 --- END OF CHANGE --- 🔴
"""
Creates the (English-only) prompt for the LLM to act as a Reflector.
(Implements Point 4 - Reflector prompt)
"""
trade = trace_log.closed_trade_object
pnl_percent = trade.get('pnl_percent', 0)
# Determine initial success
is_success = pnl_percent > 0.1 # (Consider any small profit a success)
# 🔴 --- START OF CHANGE (V2 - News Learning) --- 🔴
# (إضافة قسم الأخبار إلى الـ prompt)
news_context_section = f"""
4. **News Context (at entry):**
* VADER Score (Raw): {news_score:.4f}
* News Text: {news_text}
"""
# 🔴 --- END OF CHANGE --- 🔴
prompt = f"""
SYSTEM: You are an expert trading analyst Reflector. Your task is to analyze a completed trade "Trace" and determine the cause of success or failure. You must suggest a concise "Rule" (Delta) (max 25 words) to improve future performance.
--- TRACE LOG START ---
1. **Original Decision Context (What we decided):**
* Strategy Used: {trade.get('strategy', 'N/A')}
* Exit Profile: {trade.get('decision_data', {}).get('exit_profile', 'N/A')}
* Reasoning (at entry): {trade.get('decision_data', {}).get('reasoning', 'N/A')[:200]}...
* Entry Price: {trade.get('entry_price')}
* Initial Stop Loss: {trade.get('stop_loss')}
* Initial Take Profit: {trade.get('take_profit')}
2. **Environment Context (When we decided):**
* Market Context: {json.dumps(trace_log.market_context_at_decision)}
* Key Indicators: {json.dumps(trace_log.indicators_at_decision)}
3. **Actual Outcome (What happened):**
* Close Price: {trade.get('close_price')}
* Final PnL: {pnl_percent:+.2f}%
* Close Reason: {trace_log.actual_outcome_reason}
* Trade Duration: {trade.get('hold_duration_minutes', 'N/A')} minutes
{news_context_section}
--- TRACE LOG END ---
TASK: Analyze the Trace above.
1. Compare the "Actual Outcome" with the "Original Decision Context".
2. **Crucially, review the "News Context".** Did the market react as the VADER score predicted? Did the news text contain critical information that was missed?
3. Identify the primary "Error Mode" (e.g., 'ignored_negative_news', 'premature_exit') or "Success Factor" (e.g., 'correct_pattern_identification').
4. Suggest ONE concise "Rule" (Delta) (max 25 words) to improve performance. If the news was the cause, the rule MUST mention news.
OUTPUT FORMAT (JSON Only - Adhere strictly to this schema):
{{
"success": {str(is_success).lower()},
"score": 0.0,
"error_mode": "Short description of the error mode (e.g., 'ignored_negative_news_SEC_investigation').",
"suggested_rule": "The concise 25-word rule (e.g., 'If news contains 'SEC' or 'investigation', do not BUY regardless of technicals.').",
"confidence": 0.0
}}
"""
return prompt