Create curator.py
Browse files- learning_hub/curator.py +149 -0
learning_hub/curator.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# learning_hub/curator.py
|
| 2 |
+
import json
|
| 3 |
+
import asyncio
|
| 4 |
+
from typing import List, Dict, Any, TYPE_CHECKING
|
| 5 |
+
from .schemas import Delta
|
| 6 |
+
|
| 7 |
+
if TYPE_CHECKING:
|
| 8 |
+
from LLM import LLMService
|
| 9 |
+
from .memory_store import MemoryStore
|
| 10 |
+
|
| 11 |
+
class Curator:
|
| 12 |
+
def __init__(self, llm_service: 'LLMService', memory_store: 'MemoryStore'):
|
| 13 |
+
self.llm_service = llm_service
|
| 14 |
+
self.memory_store = memory_store
|
| 15 |
+
|
| 16 |
+
# (This is a configuration parameter from Point 6, not a placeholder)
|
| 17 |
+
self.distill_threshold: int = 50
|
| 18 |
+
self.distilled_rules_key: str = "learning_distilled_rules.json"
|
| 19 |
+
print("✅ Learning Hub Module: Curator (Distiller) loaded")
|
| 20 |
+
|
| 21 |
+
async def check_and_distill_domain(self, domain: str):
|
| 22 |
+
"""
|
| 23 |
+
Checks if a domain needs distillation and runs it if the threshold is met.
|
| 24 |
+
(Implements Point 6 - Distillation trigger)
|
| 25 |
+
"""
|
| 26 |
+
try:
|
| 27 |
+
deltas_list = await self.memory_store._load_deltas_from_r2(domain)
|
| 28 |
+
|
| 29 |
+
# 1. Filter for approved Deltas only for distillation
|
| 30 |
+
approved_deltas = [d for d in deltas_list if d.get('approved', False)]
|
| 31 |
+
|
| 32 |
+
if len(approved_deltas) >= self.distill_threshold:
|
| 33 |
+
print(f"ℹ️ [Curator] Distillation threshold reached for {domain} ({len(approved_deltas)} approved deltas). Starting...")
|
| 34 |
+
await self.distill_deltas(domain, approved_deltas)
|
| 35 |
+
else:
|
| 36 |
+
print(f"ℹ️ [Curator] {domain} has {len(approved_deltas)}/{self.distill_threshold} approved deltas. Distillation not yet required.")
|
| 37 |
+
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"❌ [Curator] Failed to check distillation for {domain}: {e}")
|
| 40 |
+
|
| 41 |
+
async def distill_deltas(self, domain: str, deltas_to_distill: List[Dict]):
|
| 42 |
+
"""
|
| 43 |
+
Runs the LLM distillation process to merge and summarize Deltas.
|
| 44 |
+
(Implements Point 4 - Curator (distillation job))
|
| 45 |
+
"""
|
| 46 |
+
try:
|
| 47 |
+
# 1. Create the distillation prompt (Now in English)
|
| 48 |
+
prompt = self._create_distillation_prompt(domain, deltas_to_distill)
|
| 49 |
+
|
| 50 |
+
# 2. Call the LLM
|
| 51 |
+
response_text = await self.llm_service._call_llm(prompt)
|
| 52 |
+
|
| 53 |
+
if not response_text:
|
| 54 |
+
raise ValueError("Distiller LLM call returned no response.")
|
| 55 |
+
|
| 56 |
+
# 3. Parse the response
|
| 57 |
+
distilled_json = self.llm_service._parse_llm_response_enhanced(
|
| 58 |
+
response_text,
|
| 59 |
+
fallback_strategy="distillation",
|
| 60 |
+
symbol=domain
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
if not distilled_json or "distilled_rules" not in distilled_json:
|
| 64 |
+
raise ValueError(f"Failed to parse Distiller LLM response: {response_text}")
|
| 65 |
+
|
| 66 |
+
distilled_rules_text_list = distilled_json.get("distilled_rules", [])
|
| 67 |
+
if not isinstance(distilled_rules_text_list, list):
|
| 68 |
+
raise ValueError(f"Distiller LLM returned 'distilled_rules' not as a list.")
|
| 69 |
+
|
| 70 |
+
# 4. Save the new distilled rules
|
| 71 |
+
await self._save_distilled_rules(domain, distilled_rules_text_list, deltas_to_distill)
|
| 72 |
+
|
| 73 |
+
# 5. Archive (delete) the old approved deltas that were just distilled
|
| 74 |
+
all_deltas = await self.memory_store._load_deltas_from_r2(domain)
|
| 75 |
+
approved_ids_to_archive = {d['id'] for d in deltas_to_distill}
|
| 76 |
+
|
| 77 |
+
# Keep only non-approved (in-review) deltas, or deltas that weren't part of this batch
|
| 78 |
+
remaining_deltas = [
|
| 79 |
+
d for d in all_deltas
|
| 80 |
+
if not (d.get('approved', False) and d.get('id') in approved_ids_to_archive)
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
await self.memory_store._save_deltas_to_r2(domain, remaining_deltas)
|
| 84 |
+
|
| 85 |
+
print(f"✅ [Curator] Distillation complete for {domain}. Created {len(distilled_rules_text_list)} new rules. Archived {len(approved_ids_to_archive)} old deltas.")
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"❌ [Curator] Distillation process failed for {domain}: {e}")
|
| 89 |
+
|
| 90 |
+
async def _save_distilled_rules(self, domain: str, new_rules_text: List[str], evidence_deltas: List[Dict]):
|
| 91 |
+
"""Saves the new distilled rules as high-priority Deltas."""
|
| 92 |
+
|
| 93 |
+
# We save them back into the main delta file as high-priority,
|
| 94 |
+
# so they get picked up by the get_active_context() function.
|
| 95 |
+
|
| 96 |
+
deltas_list = await self.memory_store._load_deltas_from_r2(domain)
|
| 97 |
+
evidence_ids = [d.get('id', 'N/A') for d in evidence_deltas]
|
| 98 |
+
|
| 99 |
+
for rule_text in new_rules_text:
|
| 100 |
+
if not rule_text: continue # Skip empty strings
|
| 101 |
+
|
| 102 |
+
distilled_delta = Delta(
|
| 103 |
+
text=rule_text,
|
| 104 |
+
domain=domain,
|
| 105 |
+
priority="high", # Distilled rules get high priority
|
| 106 |
+
score=0.95, # High confidence score
|
| 107 |
+
evidence_refs=evidence_ids, # References all the deltas it summarized
|
| 108 |
+
created_by="curator_v1 (distilled)",
|
| 109 |
+
approved=True, # Automatically approved
|
| 110 |
+
usage_count=0
|
| 111 |
+
)
|
| 112 |
+
deltas_list.append(distilled_delta.model_dump())
|
| 113 |
+
|
| 114 |
+
await self.memory_store._save_deltas_to_r2(domain, deltas_list)
|
| 115 |
+
|
| 116 |
+
def _create_distillation_prompt(self, domain: str, deltas: List[Dict]) -> str:
|
| 117 |
+
"""
|
| 118 |
+
Creates the (English-only) prompt for the LLM to act as a Distiller/Curator.
|
| 119 |
+
(Implements Point 4 - Curator prompt)
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
deltas_text = "\n".join([f"- {d.get('text')} (Score: {d.get('score', 0.5):.2f})" for d in deltas])
|
| 123 |
+
|
| 124 |
+
prompt = f"""
|
| 125 |
+
SYSTEM: You are an expert "Curator" AI. Your job is to read a list of "Deltas" (learning rules) for crypto trading, identify recurring patterns, and merge them into 3-5 concise, powerful "Golden Rules".
|
| 126 |
+
|
| 127 |
+
DOMAIN: {domain}
|
| 128 |
+
|
| 129 |
+
RAW DELTAS TO ANALYZE ({len(deltas)} rules):
|
| 130 |
+
{deltas_text}
|
| 131 |
+
--- END OF DELTAS ---
|
| 132 |
+
|
| 133 |
+
TASK:
|
| 134 |
+
1. Analyze the "RAW DELTAS" above.
|
| 135 |
+
2. Find overlaps, repetitions, and contradictions.
|
| 136 |
+
3. Generate 3 to 5 new "Distilled Rules" that summarize the core wisdom of these deltas.
|
| 137 |
+
4. Each new rule must be concise (max 25 words) and actionable.
|
| 138 |
+
|
| 139 |
+
OUTPUT FORMAT (JSON Only):
|
| 140 |
+
{{
|
| 141 |
+
"justification": "A brief explanation of the patterns you found and how you merged them.",
|
| 142 |
+
"distilled_rules": [
|
| 143 |
+
"The first golden rule (e.g., 'Always use ATR trailing stops for breakout strategies.')",
|
| 144 |
+
"The second golden rule (e.g., 'If RSI is overbought on 1H, avoid breakout entries.')",
|
| 145 |
+
"..."
|
| 146 |
+
]
|
| 147 |
+
}}
|
| 148 |
+
"""
|
| 149 |
+
return prompt
|