Update ml_engine/monte_carlo.py
Browse files- ml_engine/monte_carlo.py +78 -64
ml_engine/monte_carlo.py
CHANGED
|
@@ -3,15 +3,39 @@ import numpy as np
|
|
| 3 |
import pandas as pd
|
| 4 |
from arch import arch_model
|
| 5 |
import lightgbm as lgb
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
try:
|
| 10 |
import pandas_ta as ta
|
| 11 |
except ImportError:
|
| 12 |
print("⚠️ مكتبة pandas_ta غير موجودة، سيتم استخدام حسابات يدوية للمؤشرات.")
|
| 13 |
ta = None
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
class MonteCarloAnalyzer:
|
| 16 |
def __init__(self):
|
| 17 |
self.simulation_results = {}
|
|
@@ -19,13 +43,9 @@ class MonteCarloAnalyzer:
|
|
| 19 |
async def generate_1h_price_distribution(self, ohlcv_data, target_profit_percent=0.005):
|
| 20 |
"""
|
| 21 |
(المرحلة 1 - سريعة)
|
| 22 |
-
محاكاة مونت كارلو لتوليد توزيع سعري للساعة القادمة (للفرز الأولي).
|
| 23 |
-
- تستخدم توزيع Student-t (للذيول الثقيلة).
|
| 24 |
-
- تستخدم نموذج Merton Jump-Diffusion (للقفزات السعرية).
|
| 25 |
-
- تستخدم المتوسط/الانحراف التاريخي البسيط.
|
| 26 |
"""
|
| 27 |
try:
|
| 28 |
-
#
|
| 29 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 30:
|
| 30 |
if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 50:
|
| 31 |
closes = np.array([candle[4] for candle in ohlcv_data['15m']])
|
|
@@ -47,26 +67,25 @@ class MonteCarloAnalyzer:
|
|
| 47 |
self.simulation_results = {'error': 'Invalid current price <= 0'}
|
| 48 |
return None
|
| 49 |
|
| 50 |
-
#
|
| 51 |
log_returns = np.log(closes[1:] / closes[:-1])
|
| 52 |
-
log_returns = log_returns[~np.isnan(log_returns) & ~np.isinf(log_returns)]
|
| 53 |
|
| 54 |
if len(log_returns) < 20:
|
| 55 |
self.simulation_results = {'error': 'Insufficient log returns (< 20)'}
|
| 56 |
return None
|
| 57 |
|
| 58 |
-
# 🔴 استخدام المتوسط والانحراف التاريخي (بسيط وسريع)
|
| 59 |
mean_return = np.mean(log_returns)
|
| 60 |
std_return = np.std(log_returns)
|
| 61 |
|
| 62 |
-
#
|
| 63 |
-
num_simulations = 5000
|
| 64 |
-
t_df = 10
|
| 65 |
-
jump_lambda = 0.05
|
| 66 |
-
jump_mean = 0.0
|
| 67 |
-
jump_std = std_return * 3.0
|
| 68 |
|
| 69 |
-
#
|
| 70 |
drift = (mean_return - 0.5 * std_return**2)
|
| 71 |
diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
|
| 72 |
jump_mask = np.random.rand(num_simulations) < jump_lambda
|
|
@@ -76,7 +95,7 @@ class MonteCarloAnalyzer:
|
|
| 76 |
simulated_log_returns = drift + diffusion + jump_component
|
| 77 |
simulated_prices = current_price * np.exp(simulated_log_returns)
|
| 78 |
|
| 79 |
-
#
|
| 80 |
mean_price = np.mean(simulated_prices)
|
| 81 |
median_price = np.median(simulated_prices)
|
| 82 |
percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
|
|
@@ -106,29 +125,29 @@ class MonteCarloAnalyzer:
|
|
| 106 |
'CVaR_95_value': CVaR_95_value,
|
| 107 |
},
|
| 108 |
'probability_of_gain': probability_of_gain,
|
| 109 |
-
'raw_simulated_prices': simulated_prices[:100]
|
| 110 |
}
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
except Exception as e:
|
| 114 |
-
|
|
|
|
|
|
|
| 115 |
return None
|
| 116 |
|
| 117 |
# 🔴 --- دالة جديدة --- 🔴
|
| 118 |
async def generate_1h_distribution_advanced(self, ohlcv_data, target_profit_percent=0.005):
|
| 119 |
"""
|
| 120 |
(المرحلة 2+3 - متقدمة)
|
| 121 |
-
محاكاة مونت كارلو لتوليد توزيع سعري دقيق (لأفضل 10 مرشحين).
|
| 122 |
-
- تستخدم GARCH(1,1) لتوقع التقلب (Phase 2).
|
| 123 |
-
- تستخدم LightGBM لتوقع الميل/Drift (Phase 3).
|
| 124 |
-
- تستخدم Student-t و Jumps للمحاكاة.
|
| 125 |
"""
|
| 126 |
try:
|
| 127 |
# 1. إعداد البيانات (DataFrame)
|
| 128 |
-
# نستخدم إطار 1h لأنه الأنسب لـ GARCH/LGBM لتوقع الساعة القادمة
|
| 129 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 50:
|
| 130 |
self.simulation_results = {'error': 'Advanced MC requires 1h data (>= 50 candles)'}
|
| 131 |
-
# كحل احتياطي، يمكننا العودة للنموذج البسيط إذا فشل المتقدم
|
| 132 |
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
| 133 |
|
| 134 |
candles = ohlcv_data['1h']
|
|
@@ -142,39 +161,37 @@ class MonteCarloAnalyzer:
|
|
| 142 |
raise ValueError("DataFrame creation failed or insufficient data after processing")
|
| 143 |
|
| 144 |
current_price = df['close'].iloc[-1]
|
| 145 |
-
|
| 146 |
-
# 2. حساب العوائد اللوغاريتمية (أساس كل الحسابات)
|
| 147 |
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
|
| 148 |
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
|
| 149 |
|
| 150 |
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
|
| 151 |
try:
|
| 152 |
-
#
|
| 153 |
-
|
| 154 |
-
|
| 155 |
res = garch_model.fit(update_freq=0, disp='off')
|
| 156 |
forecast = res.forecast(horizon=1)
|
| 157 |
-
#
|
| 158 |
-
forecasted_var = forecast.variance.iloc[-1, 0] / 10000
|
| 159 |
forecasted_std_return = np.sqrt(forecasted_var)
|
|
|
|
| 160 |
except Exception as garch_err:
|
| 161 |
-
|
| 162 |
-
forecasted_std_return = np.std(log_returns_series.iloc[-30:]) # انحراف آخر 30 شمعة
|
| 163 |
print(f"⚠️ GARCH failed, using std: {garch_err}")
|
| 164 |
|
| 165 |
|
| 166 |
# 4. (Phase 3) توقع الميل (Drift) باستخدام LightGBM
|
| 167 |
try:
|
| 168 |
-
# 4a. هندسة الميزات
|
| 169 |
if ta:
|
| 170 |
df['rsi'] = ta.rsi(df['close'], length=14)
|
| 171 |
macd = ta.macd(df['close'], fast=12, slow=26, signal=9)
|
| 172 |
df['macd_hist'] = macd['MACDh_12_26_9']
|
| 173 |
-
else:
|
| 174 |
delta = df['close'].diff()
|
| 175 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 176 |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 177 |
-
rs = gain / loss
|
| 178 |
df['rsi'] = 100 - (100 / (1 + rs))
|
| 179 |
df['macd_hist'] = df['close'].ewm(span=12).mean() - df['close'].ewm(span=26).mean()
|
| 180 |
|
|
@@ -187,39 +204,32 @@ class MonteCarloAnalyzer:
|
|
| 187 |
if df.empty or len(df) < 20:
|
| 188 |
raise ValueError("Insufficient data after feature engineering")
|
| 189 |
|
| 190 |
-
# 4b. إعداد بيانات التدريب والتنبؤ
|
| 191 |
-
df['target'] = df['log_returns'].shift(-1)
|
| 192 |
df.dropna(inplace=True)
|
| 193 |
-
|
| 194 |
X = df[features]
|
| 195 |
y = df['target']
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
X_predict = X.iloc[-1:] # آخر صف من الميزات للتنبؤ
|
| 199 |
|
| 200 |
-
# 4c. تدريب نموذج LGBM
|
| 201 |
lgbm_model = lgb.LGBMRegressor(n_estimators=100, learning_rate=0.1, n_jobs=1, verbose=-1)
|
| 202 |
lgbm_model.fit(X_train, y_train)
|
| 203 |
|
| 204 |
-
# 4d. التنبؤ بالميل
|
| 205 |
forecasted_mean_return = lgbm_model.predict(X_predict)[0]
|
| 206 |
|
| 207 |
except Exception as lgbm_err:
|
| 208 |
-
|
| 209 |
-
forecasted_mean_return = np.mean(log_returns_series.iloc[-30:]) # متوسط آخر 30 شمعة
|
| 210 |
print(f"⚠️ LGBM failed, using mean: {lgbm_err}")
|
| 211 |
|
| 212 |
-
# 5. تشغيل المحاكاة بالقيم الديناميكية
|
| 213 |
-
|
| 214 |
-
# استخدام نفس الباراميترات (T-Dist, Jumps)
|
| 215 |
num_simulations = 5000
|
| 216 |
t_df = 10
|
| 217 |
jump_lambda = 0.05
|
| 218 |
jump_mean = 0.0
|
| 219 |
-
# تقلب القفزة يعتمد الآن على التقلب المتوقع من GARCH
|
| 220 |
jump_std = forecasted_std_return * 3.0
|
| 221 |
|
| 222 |
-
# 🔴 استخدام القيم المتوقعة
|
| 223 |
mean_return = forecasted_mean_return
|
| 224 |
std_return = forecasted_std_return
|
| 225 |
|
|
@@ -233,7 +243,7 @@ class MonteCarloAnalyzer:
|
|
| 233 |
simulated_log_returns = drift + diffusion + jump_component
|
| 234 |
simulated_prices = current_price * np.exp(simulated_log_returns)
|
| 235 |
|
| 236 |
-
# 6. حساب المخرجات والتوزيع (
|
| 237 |
mean_price = np.mean(simulated_prices)
|
| 238 |
median_price = np.median(simulated_prices)
|
| 239 |
percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
|
|
@@ -249,11 +259,11 @@ class MonteCarloAnalyzer:
|
|
| 249 |
probability_of_gain = np.mean(simulated_prices >= target_price)
|
| 250 |
|
| 251 |
self.simulation_results = {
|
| 252 |
-
'simulation_model': 'Phase2_GARCH_LGBM',
|
| 253 |
'num_simulations': num_simulations,
|
| 254 |
'current_price': current_price,
|
| 255 |
-
'forecasted_drift_lgbm': forecasted_mean_return,
|
| 256 |
-
'forecasted_vol_garch': forecasted_std_return,
|
| 257 |
'distribution_summary': {'mean_price': mean_price, 'median_price': median_price},
|
| 258 |
'prediction_interval_50': pi_50,
|
| 259 |
'prediction_interval_90': pi_90,
|
|
@@ -265,15 +275,19 @@ class MonteCarloAnalyzer:
|
|
| 265 |
'CVaR_95_value': CVaR_95_value,
|
| 266 |
},
|
| 267 |
'probability_of_gain': probability_of_gain,
|
| 268 |
-
'raw_simulated_prices': simulated_prices[:100]
|
| 269 |
}
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
except Exception as e:
|
| 273 |
print(f"❌ خطأ فادح في محاكاة مونت كارلو المتقدمة (GARCH/LGBM): {e}")
|
| 274 |
traceback.print_exc()
|
| 275 |
-
self.simulation_results = {'error': f'Advanced MC Error: {e}'}
|
| 276 |
-
#
|
| 277 |
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
| 278 |
|
| 279 |
def _calculate_trend_adjustment(self, closes):
|
|
@@ -288,4 +302,4 @@ class MonteCarloAnalyzer:
|
|
| 288 |
else: return 1.0
|
| 289 |
except Exception: return 1.0
|
| 290 |
|
| 291 |
-
print("✅ ML Module: Advanced Monte Carlo Analyzer loaded (
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
from arch import arch_model
|
| 5 |
import lightgbm as lgb
|
| 6 |
+
import traceback # (Import traceback)
|
| 7 |
+
import json # (Import json for sanitizing)
|
| 8 |
+
|
| 9 |
+
# (Import pandas_ta or set to None)
|
| 10 |
try:
|
| 11 |
import pandas_ta as ta
|
| 12 |
except ImportError:
|
| 13 |
print("⚠️ مكتبة pandas_ta غير موجودة، سيتم استخدام حسابات يدوية للمؤشرات.")
|
| 14 |
ta = None
|
| 15 |
|
| 16 |
+
# 🔴 --- START OF CHANGE --- 🔴
|
| 17 |
+
# (New Helper function to fix JSON serialization)
|
| 18 |
+
def _sanitize_results_for_json(results_dict):
|
| 19 |
+
"""
|
| 20 |
+
Recursively converts numpy types (ndarray, np.float64, etc.)
|
| 21 |
+
in a dictionary to standard Python types (list, float)
|
| 22 |
+
to make it JSON serializable.
|
| 23 |
+
"""
|
| 24 |
+
if isinstance(results_dict, dict):
|
| 25 |
+
return {k: _sanitize_results_for_json(v) for k, v in results_dict.items()}
|
| 26 |
+
elif isinstance(results_dict, list):
|
| 27 |
+
return [_sanitize_results_for_json(v) for v in results_dict]
|
| 28 |
+
elif isinstance(results_dict, np.ndarray):
|
| 29 |
+
return results_dict.tolist() # (Fixes ndarray error)
|
| 30 |
+
elif isinstance(results_dict, (np.float64, np.float32, np.float_)):
|
| 31 |
+
return float(results_dict) # (Fixes np.float error)
|
| 32 |
+
elif isinstance(results_dict, (np.int64, np.int32, np.int_)):
|
| 33 |
+
return int(results_dict) # (Proactive fix for int types)
|
| 34 |
+
else:
|
| 35 |
+
return results_dict
|
| 36 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 37 |
+
|
| 38 |
+
|
| 39 |
class MonteCarloAnalyzer:
|
| 40 |
def __init__(self):
|
| 41 |
self.simulation_results = {}
|
|
|
|
| 43 |
async def generate_1h_price_distribution(self, ohlcv_data, target_profit_percent=0.005):
|
| 44 |
"""
|
| 45 |
(المرحلة 1 - سريعة)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
"""
|
| 47 |
try:
|
| 48 |
+
# (Data quality checks - unchanged)
|
| 49 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 30:
|
| 50 |
if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 50:
|
| 51 |
closes = np.array([candle[4] for candle in ohlcv_data['15m']])
|
|
|
|
| 67 |
self.simulation_results = {'error': 'Invalid current price <= 0'}
|
| 68 |
return None
|
| 69 |
|
| 70 |
+
# (Statistical calculation - unchanged)
|
| 71 |
log_returns = np.log(closes[1:] / closes[:-1])
|
| 72 |
+
log_returns = log_returns[~np.isnan(log_returns) & ~np.isinf(log_returns)]
|
| 73 |
|
| 74 |
if len(log_returns) < 20:
|
| 75 |
self.simulation_results = {'error': 'Insufficient log returns (< 20)'}
|
| 76 |
return None
|
| 77 |
|
|
|
|
| 78 |
mean_return = np.mean(log_returns)
|
| 79 |
std_return = np.std(log_returns)
|
| 80 |
|
| 81 |
+
# (Simulation parameters - unchanged)
|
| 82 |
+
num_simulations = 5000
|
| 83 |
+
t_df = 10
|
| 84 |
+
jump_lambda = 0.05
|
| 85 |
+
jump_mean = 0.0
|
| 86 |
+
jump_std = std_return * 3.0
|
| 87 |
|
| 88 |
+
# (Simulation run - unchanged)
|
| 89 |
drift = (mean_return - 0.5 * std_return**2)
|
| 90 |
diffusion = std_return * np.random.standard_t(df=t_df, size=num_simulations)
|
| 91 |
jump_mask = np.random.rand(num_simulations) < jump_lambda
|
|
|
|
| 95 |
simulated_log_returns = drift + diffusion + jump_component
|
| 96 |
simulated_prices = current_price * np.exp(simulated_log_returns)
|
| 97 |
|
| 98 |
+
# (Output calculation - unchanged)
|
| 99 |
mean_price = np.mean(simulated_prices)
|
| 100 |
median_price = np.median(simulated_prices)
|
| 101 |
percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
|
|
|
|
| 125 |
'CVaR_95_value': CVaR_95_value,
|
| 126 |
},
|
| 127 |
'probability_of_gain': probability_of_gain,
|
| 128 |
+
'raw_simulated_prices': simulated_prices[:100] # (This is the ndarray)
|
| 129 |
}
|
| 130 |
+
|
| 131 |
+
# 🔴 --- START OF CHANGE --- 🔴
|
| 132 |
+
# (Sanitize the results before returning)
|
| 133 |
+
return _sanitize_results_for_json(self.simulation_results)
|
| 134 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 135 |
|
| 136 |
except Exception as e:
|
| 137 |
+
print(f"❌ خطأ فادح في محاكاة مونت كارلو (Phase 1): {e}")
|
| 138 |
+
traceback.print_exc()
|
| 139 |
+
self.simulation_results = {'error': f'Phase 1 MC Error: {str(e)}'}
|
| 140 |
return None
|
| 141 |
|
| 142 |
# 🔴 --- دالة جديدة --- 🔴
|
| 143 |
async def generate_1h_distribution_advanced(self, ohlcv_data, target_profit_percent=0.005):
|
| 144 |
"""
|
| 145 |
(المرحلة 2+3 - متقدمة)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
"""
|
| 147 |
try:
|
| 148 |
# 1. إعداد البيانات (DataFrame)
|
|
|
|
| 149 |
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 50:
|
| 150 |
self.simulation_results = {'error': 'Advanced MC requires 1h data (>= 50 candles)'}
|
|
|
|
| 151 |
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
| 152 |
|
| 153 |
candles = ohlcv_data['1h']
|
|
|
|
| 161 |
raise ValueError("DataFrame creation failed or insufficient data after processing")
|
| 162 |
|
| 163 |
current_price = df['close'].iloc[-1]
|
|
|
|
|
|
|
| 164 |
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
|
| 165 |
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
|
| 166 |
|
| 167 |
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
|
| 168 |
try:
|
| 169 |
+
# 🔴 --- START OF CHANGE --- 🔴
|
| 170 |
+
# (Fix DataScaleWarning: Rescale by 10000 instead of 100)
|
| 171 |
+
garch_model = arch_model(log_returns_series * 10000, vol='Garch', p=1, q=1, dist='t')
|
| 172 |
res = garch_model.fit(update_freq=0, disp='off')
|
| 173 |
forecast = res.forecast(horizon=1)
|
| 174 |
+
# (Divide by 10000^2)
|
| 175 |
+
forecasted_var = forecast.variance.iloc[-1, 0] / (10000**2)
|
| 176 |
forecasted_std_return = np.sqrt(forecasted_var)
|
| 177 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 178 |
except Exception as garch_err:
|
| 179 |
+
forecasted_std_return = np.std(log_returns_series.iloc[-30:])
|
|
|
|
| 180 |
print(f"⚠️ GARCH failed, using std: {garch_err}")
|
| 181 |
|
| 182 |
|
| 183 |
# 4. (Phase 3) توقع الميل (Drift) باستخدام LightGBM
|
| 184 |
try:
|
| 185 |
+
# 4a. هندسة الميزات (Unchanged)
|
| 186 |
if ta:
|
| 187 |
df['rsi'] = ta.rsi(df['close'], length=14)
|
| 188 |
macd = ta.macd(df['close'], fast=12, slow=26, signal=9)
|
| 189 |
df['macd_hist'] = macd['MACDh_12_26_9']
|
| 190 |
+
else:
|
| 191 |
delta = df['close'].diff()
|
| 192 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 193 |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 194 |
+
rs = gain / (loss + 1e-9) # (Added 1e-9 to prevent zero division)
|
| 195 |
df['rsi'] = 100 - (100 / (1 + rs))
|
| 196 |
df['macd_hist'] = df['close'].ewm(span=12).mean() - df['close'].ewm(span=26).mean()
|
| 197 |
|
|
|
|
| 204 |
if df.empty or len(df) < 20:
|
| 205 |
raise ValueError("Insufficient data after feature engineering")
|
| 206 |
|
| 207 |
+
# 4b. إعداد بيانات التدريب والتنبؤ (Unchanged)
|
| 208 |
+
df['target'] = df['log_returns'].shift(-1)
|
| 209 |
df.dropna(inplace=True)
|
|
|
|
| 210 |
X = df[features]
|
| 211 |
y = df['target']
|
| 212 |
+
X_train, y_train = X.iloc[:-1], y.iloc[:-1]
|
| 213 |
+
X_predict = X.iloc[-1:]
|
|
|
|
| 214 |
|
| 215 |
+
# 4c. تدريب نموذج LGBM (Unchanged)
|
| 216 |
lgbm_model = lgb.LGBMRegressor(n_estimators=100, learning_rate=0.1, n_jobs=1, verbose=-1)
|
| 217 |
lgbm_model.fit(X_train, y_train)
|
| 218 |
|
| 219 |
+
# 4d. التنبؤ بالميل (Unchanged)
|
| 220 |
forecasted_mean_return = lgbm_model.predict(X_predict)[0]
|
| 221 |
|
| 222 |
except Exception as lgbm_err:
|
| 223 |
+
forecasted_mean_return = np.mean(log_returns_series.iloc[-30:])
|
|
|
|
| 224 |
print(f"⚠️ LGBM failed, using mean: {lgbm_err}")
|
| 225 |
|
| 226 |
+
# 5. تشغيل المحاكاة بالقيم الديناميكية (Unchanged)
|
|
|
|
|
|
|
| 227 |
num_simulations = 5000
|
| 228 |
t_df = 10
|
| 229 |
jump_lambda = 0.05
|
| 230 |
jump_mean = 0.0
|
|
|
|
| 231 |
jump_std = forecasted_std_return * 3.0
|
| 232 |
|
|
|
|
| 233 |
mean_return = forecasted_mean_return
|
| 234 |
std_return = forecasted_std_return
|
| 235 |
|
|
|
|
| 243 |
simulated_log_returns = drift + diffusion + jump_component
|
| 244 |
simulated_prices = current_price * np.exp(simulated_log_returns)
|
| 245 |
|
| 246 |
+
# 6. حساب المخرجات والتوزيع (Unchanged)
|
| 247 |
mean_price = np.mean(simulated_prices)
|
| 248 |
median_price = np.median(simulated_prices)
|
| 249 |
percentiles = np.percentile(simulated_prices, [2.5, 5, 25, 50, 75, 95, 97.5])
|
|
|
|
| 259 |
probability_of_gain = np.mean(simulated_prices >= target_price)
|
| 260 |
|
| 261 |
self.simulation_results = {
|
| 262 |
+
'simulation_model': 'Phase2_GARCH_LGBM',
|
| 263 |
'num_simulations': num_simulations,
|
| 264 |
'current_price': current_price,
|
| 265 |
+
'forecasted_drift_lgbm': forecasted_mean_return,
|
| 266 |
+
'forecasted_vol_garch': forecasted_std_return,
|
| 267 |
'distribution_summary': {'mean_price': mean_price, 'median_price': median_price},
|
| 268 |
'prediction_interval_50': pi_50,
|
| 269 |
'prediction_interval_90': pi_90,
|
|
|
|
| 275 |
'CVaR_95_value': CVaR_95_value,
|
| 276 |
},
|
| 277 |
'probability_of_gain': probability_of_gain,
|
| 278 |
+
'raw_simulated_prices': simulated_prices[:100] # (This is the ndarray)
|
| 279 |
}
|
| 280 |
+
|
| 281 |
+
# 🔴 --- START OF CHANGE --- 🔴
|
| 282 |
+
# (Sanitize the results before returning)
|
| 283 |
+
return _sanitize_results_for_json(self.simulation_results)
|
| 284 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 285 |
|
| 286 |
except Exception as e:
|
| 287 |
print(f"❌ خطأ فادح في محاكاة مونت كارلو المتقدمة (GARCH/LGBM): {e}")
|
| 288 |
traceback.print_exc()
|
| 289 |
+
self.simulation_results = {'error': f'Advanced MC Error: {str(e)}'}
|
| 290 |
+
# (Fall back to Phase 1, which also sanitizes its output now)
|
| 291 |
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
| 292 |
|
| 293 |
def _calculate_trend_adjustment(self, closes):
|
|
|
|
| 302 |
else: return 1.0
|
| 303 |
except Exception: return 1.0
|
| 304 |
|
| 305 |
+
print("✅ ML Module: Advanced Monte Carlo Analyzer loaded (FIXED: JSON Serializable & GARCH Scale)")
|