Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,22 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import traceback
|
| 3 |
-
import signal
|
| 4 |
-
import sys
|
| 5 |
-
import uvicorn
|
| 6 |
-
import asyncio
|
| 7 |
from contextlib import asynccontextmanager
|
| 8 |
-
from fastapi import FastAPI,
|
| 9 |
-
from datetime import datetime
|
| 10 |
from r2 import R2Service
|
| 11 |
from LLM import LLMService, local_analyze_opportunity, local_re_analyze_trade
|
| 12 |
from data_manager import DataManager
|
| 13 |
from ML import MLProcessor as FeatureProcessor
|
| 14 |
from learning_engine import LearningEngine
|
| 15 |
-
import
|
| 16 |
-
import json
|
| 17 |
import state
|
| 18 |
-
import re
|
| 19 |
-
|
| 20 |
-
from whale_news_data import whale_monitor_global
|
| 21 |
from helpers import safe_float_conversion, _apply_patience_logic
|
| 22 |
|
| 23 |
-
TOP_N_SYMBOLS = 100
|
| 24 |
-
OPPORTUNITY_COUNT = 10
|
| 25 |
-
CHUNK_SIZE = 5
|
| 26 |
-
|
| 27 |
r2_service_global = None
|
| 28 |
data_manager_global = None
|
| 29 |
llm_service_global = None
|
| 30 |
learning_engine_global = None
|
| 31 |
realtime_monitor = None
|
|
|
|
| 32 |
|
| 33 |
class RealTimeTradeMonitor:
|
| 34 |
def __init__(self):
|
|
@@ -37,7 +25,6 @@ class RealTimeTradeMonitor:
|
|
| 37 |
|
| 38 |
async def start_monitoring(self):
|
| 39 |
self.is_running = True
|
| 40 |
-
print("🔍 Starting real-time trade monitoring...")
|
| 41 |
|
| 42 |
while self.is_running:
|
| 43 |
try:
|
|
@@ -57,13 +44,11 @@ class RealTimeTradeMonitor:
|
|
| 57 |
await asyncio.sleep(10)
|
| 58 |
|
| 59 |
except Exception as error:
|
| 60 |
-
print(f"
|
| 61 |
await asyncio.sleep(30)
|
| 62 |
|
| 63 |
async def _monitor_single_trade(self, trade):
|
| 64 |
symbol = trade['symbol']
|
| 65 |
-
strategy = trade.get('strategy', 'GENERIC')
|
| 66 |
-
print(f"📊 Starting real-time monitoring for {symbol} (Strategy: {strategy})")
|
| 67 |
|
| 68 |
while symbol in self.monitoring_tasks and self.is_running:
|
| 69 |
try:
|
|
@@ -90,15 +75,11 @@ class RealTimeTradeMonitor:
|
|
| 90 |
dynamic_stop = current_price * 0.98
|
| 91 |
if dynamic_stop > (stop_loss or 0):
|
| 92 |
trade['stop_loss'] = dynamic_stop
|
| 93 |
-
print(f"🔒 Updated trailing stop for {symbol}: {dynamic_stop:.4f}")
|
| 94 |
|
| 95 |
if should_close:
|
| 96 |
-
print(f"🚨 IMMEDIATE CLOSE: {symbol} - {close_reason} - Strategy: {strategy}")
|
| 97 |
-
|
| 98 |
if r2_service_global.acquire_lock():
|
| 99 |
try:
|
| 100 |
await r2_service_global.close_trade_async(trade, current_price)
|
| 101 |
-
print(f"✅ Trade {symbol} closed immediately at {current_price}. Strategy: {strategy}")
|
| 102 |
|
| 103 |
if learning_engine_global and learning_engine_global.initialized:
|
| 104 |
await learning_engine_global.analyze_trade_outcome(trade, 'CLOSED_BY_MONITOR')
|
|
@@ -115,56 +96,35 @@ class RealTimeTradeMonitor:
|
|
| 115 |
await asyncio.sleep(15)
|
| 116 |
|
| 117 |
except Exception as error:
|
| 118 |
-
print(f"
|
| 119 |
await asyncio.sleep(30)
|
| 120 |
|
| 121 |
def stop_monitoring(self):
|
| 122 |
self.is_running = False
|
| 123 |
self.monitoring_tasks.clear()
|
| 124 |
-
print("🛑 Real-time trade monitoring stopped")
|
| 125 |
|
| 126 |
async def monitor_market_async():
|
| 127 |
-
global data_manager_global
|
| 128 |
|
| 129 |
init_attempts = 0
|
| 130 |
while data_manager_global is None and init_attempts < 10:
|
| 131 |
-
print(f"⏳ Waiting for data manager initialization... (attempt {init_attempts + 1}/10)")
|
| 132 |
await asyncio.sleep(3)
|
| 133 |
init_attempts += 1
|
| 134 |
|
| 135 |
if data_manager_global is None:
|
| 136 |
-
print("❌ Data manager failed to initialize after 10 attempts")
|
| 137 |
return
|
| 138 |
|
| 139 |
while True:
|
| 140 |
try:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
try:
|
| 144 |
-
market_context = await data_manager_global.get_market_context_async()
|
| 145 |
-
except Exception as error:
|
| 146 |
-
print(f"⚠️ Failed to get market context: {error}")
|
| 147 |
-
market_context = await get_fallback_market_context()
|
| 148 |
|
| 149 |
if not market_context:
|
| 150 |
-
print("❌ Failed to get market context. Assuming neutral state.")
|
| 151 |
state.MARKET_STATE_OK = True
|
| 152 |
await asyncio.sleep(60)
|
| 153 |
continue
|
| 154 |
|
| 155 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 156 |
-
whale_sentiment = whale_analysis.get('sentiment', 'NEUTRAL')
|
| 157 |
is_critical = whale_analysis.get('critical_alert', False)
|
| 158 |
-
total_volume = whale_analysis.get('total_volume_usd', 0)
|
| 159 |
-
|
| 160 |
-
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 161 |
-
net_flow = netflow_analysis.get('net_flow', 0)
|
| 162 |
-
flow_direction = netflow_analysis.get('flow_direction', 'BALANCED')
|
| 163 |
-
market_impact = netflow_analysis.get('market_impact', 'UNKNOWN')
|
| 164 |
-
|
| 165 |
-
print(f"🐋 Whale Analysis: {whale_sentiment} | Critical: {is_critical} | Volume: ${total_volume:,.0f}")
|
| 166 |
-
print(f"📈 Net Flow: ${net_flow:,.0f} ({flow_direction}) | Market Impact: {market_impact}")
|
| 167 |
-
print(f"📊 Whale Description: {whale_analysis.get('description', 'No data')}")
|
| 168 |
|
| 169 |
bitcoin_sentiment = market_context.get('btc_sentiment')
|
| 170 |
fear_greed_index = market_context.get('fear_and_greed_index')
|
|
@@ -174,60 +134,28 @@ async def monitor_market_async():
|
|
| 174 |
|
| 175 |
if is_critical:
|
| 176 |
should_halt_trading = True
|
| 177 |
-
halt_reason = f"CRITICAL whale activity detected
|
| 178 |
elif bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30):
|
| 179 |
should_halt_trading = True
|
| 180 |
-
halt_reason = f"Bearish market conditions
|
| 181 |
-
elif netflow_analysis and net_flow < -1000000 and market_impact == 'HIGH':
|
| 182 |
-
should_halt_trading = True
|
| 183 |
-
halt_reason = f"Strong sell pressure detected: ${abs(net_flow):,.0f} net outflow to exchanges"
|
| 184 |
|
| 185 |
if should_halt_trading:
|
| 186 |
-
print(f"🚨🚨🚨 MARKET HALT: {halt_reason} 🚨🚨🚨")
|
| 187 |
state.MARKET_STATE_OK = False
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
"reason": halt_reason,
|
| 193 |
-
"whale_sentiment": whale_sentiment,
|
| 194 |
-
"is_critical": is_critical,
|
| 195 |
-
"net_flow": net_flow,
|
| 196 |
-
"flow_direction": flow_direction
|
| 197 |
-
})
|
| 198 |
-
except Exception as log_error:
|
| 199 |
-
print(f"⚠️ Failed to save market halt log: {log_error}")
|
| 200 |
else:
|
| 201 |
if not state.MARKET_STATE_OK:
|
| 202 |
-
print("
|
| 203 |
state.MARKET_STATE_OK = True
|
| 204 |
|
| 205 |
await asyncio.sleep(60)
|
| 206 |
except Exception as error:
|
| 207 |
-
print(f"
|
| 208 |
-
traceback.print_exc()
|
| 209 |
state.MARKET_STATE_OK = True
|
| 210 |
await asyncio.sleep(60)
|
| 211 |
|
| 212 |
-
async def get_fallback_market_context():
|
| 213 |
-
return {
|
| 214 |
-
'timestamp': datetime.now().isoformat(),
|
| 215 |
-
'general_whale_activity': {
|
| 216 |
-
'sentiment': 'NEUTRAL',
|
| 217 |
-
'description': 'Fallback mode - system initializing',
|
| 218 |
-
'critical_alert': False,
|
| 219 |
-
'transaction_count': 0,
|
| 220 |
-
'total_volume_usd': 0,
|
| 221 |
-
'netflow_analysis': {
|
| 222 |
-
'net_flow': 0,
|
| 223 |
-
'flow_direction': 'BALANCED',
|
| 224 |
-
'market_impact': 'LOW'
|
| 225 |
-
}
|
| 226 |
-
},
|
| 227 |
-
'btc_sentiment': 'NEUTRAL',
|
| 228 |
-
'fear_and_greed_index': 50
|
| 229 |
-
}
|
| 230 |
-
|
| 231 |
async def validate_candidate_data_enhanced(candidate):
|
| 232 |
try:
|
| 233 |
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
|
|
@@ -240,10 +168,10 @@ async def validate_candidate_data_enhanced(candidate):
|
|
| 240 |
candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.5)
|
| 241 |
candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score'])
|
| 242 |
|
| 243 |
-
if 'reasons_for_candidacy' not in candidate
|
| 244 |
candidate['reasons_for_candidacy'] = ['unknown_reason']
|
| 245 |
|
| 246 |
-
if 'sentiment_data' not in candidate
|
| 247 |
candidate['sentiment_data'] = {
|
| 248 |
'btc_sentiment': 'NEUTRAL',
|
| 249 |
'fear_and_greed_index': 50,
|
|
@@ -256,61 +184,34 @@ async def validate_candidate_data_enhanced(candidate):
|
|
| 256 |
if 'strategy_scores' not in candidate:
|
| 257 |
candidate['strategy_scores'] = {}
|
| 258 |
|
| 259 |
-
if '
|
| 260 |
-
candidate['recommended_strategy'] = 'unknown'
|
| 261 |
-
|
| 262 |
-
if 'target_strategy' not in candidate or not candidate['target_strategy'] or candidate['target_strategy'] == 'unknown':
|
| 263 |
candidate['target_strategy'] = 'GENERIC'
|
| 264 |
|
| 265 |
return True
|
| 266 |
|
| 267 |
except Exception as error:
|
| 268 |
-
print(f"
|
| 269 |
return False
|
| 270 |
|
| 271 |
async def analyze_market_strategy(market_context):
|
| 272 |
try:
|
| 273 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 274 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
| 275 |
-
trading_signals = whale_analysis.get('trading_signals', [])
|
| 276 |
|
| 277 |
prompt = f"""
|
| 278 |
-
|
| 279 |
|
| 280 |
-
|
| 281 |
-
- BTC Price: {market_context.get('bitcoin_price_usd')}
|
| 282 |
- BTC Sentiment: {market_context.get('btc_sentiment')}
|
| 283 |
- Fear & Greed Index: {market_context.get('fear_and_greed_index')}
|
| 284 |
- Whale Analysis: {whale_analysis.get('sentiment')}
|
| 285 |
-
- Critical
|
| 286 |
-
- Net Flow
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
**Available Strategies:**
|
| 291 |
-
1. AGGRESSIVE_GROWTH - For strong bull markets with positive net flow.
|
| 292 |
-
2. DEFENSIVE_GROWTH - For volatile or uncertain markets.
|
| 293 |
-
3. CONSERVATIVE - For bearish or high-risk markets with negative net flow.
|
| 294 |
-
4. HIGH_FREQUENCY - For sideways markets with balanced flow.
|
| 295 |
-
5. WHALE_FOLLOWING - When whale activity is high and clear signals present.
|
| 296 |
-
6. GENERIC - Balanced approach for normal conditions.
|
| 297 |
-
|
| 298 |
-
**Enhanced Decision Factors:**
|
| 299 |
-
- Net Flow > $1M positive: Consider AGGRESSIVE_GROWTH
|
| 300 |
-
- Net Flow < $1M negative: Consider CONSERVATIVE
|
| 301 |
-
- Strong whale signals: Consider WHALE_FOLLOWING
|
| 302 |
-
- Critical alerts: Use CONSERVATIVE regardless of other factors
|
| 303 |
-
|
| 304 |
-
**Required:**
|
| 305 |
-
- Choose one primary strategy.
|
| 306 |
-
- Explain why in a single sentence.
|
| 307 |
-
- Set an acceptable risk tolerance (1 to 10).
|
| 308 |
-
- Determine the optimal number of coins to scan (50 to 200).
|
| 309 |
-
|
| 310 |
-
**Output (JSON only):**
|
| 311 |
{{
|
| 312 |
"primary_strategy": "STRATEGY_NAME",
|
| 313 |
-
"reasoning": "Brief reasoning
|
| 314 |
"risk_tolerance": 5,
|
| 315 |
"optimal_scan_count": 100
|
| 316 |
}}
|
|
@@ -319,26 +220,23 @@ async def analyze_market_strategy(market_context):
|
|
| 319 |
response = await llm_service_global._call_llm(prompt)
|
| 320 |
|
| 321 |
try:
|
| 322 |
-
|
| 323 |
-
|
|
|
|
| 324 |
except:
|
| 325 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 326 |
if net_flow > 1000000:
|
| 327 |
fallback_strategy = "AGGRESSIVE_GROWTH"
|
| 328 |
-
reasoning = "Strong positive net flow detected"
|
| 329 |
elif net_flow < -1000000:
|
| 330 |
fallback_strategy = "CONSERVATIVE"
|
| 331 |
-
reasoning = "Strong negative net flow detected"
|
| 332 |
elif whale_analysis.get('critical_alert'):
|
| 333 |
fallback_strategy = "CONSERVATIVE"
|
| 334 |
-
reasoning = "Critical whale alert active"
|
| 335 |
else:
|
| 336 |
fallback_strategy = "GENERIC"
|
| 337 |
-
reasoning = "Balanced market conditions"
|
| 338 |
|
| 339 |
strategy_data = {
|
| 340 |
"primary_strategy": fallback_strategy,
|
| 341 |
-
"reasoning":
|
| 342 |
"risk_tolerance": 5,
|
| 343 |
"optimal_scan_count": 100,
|
| 344 |
}
|
|
@@ -346,7 +244,7 @@ async def analyze_market_strategy(market_context):
|
|
| 346 |
return strategy_data
|
| 347 |
|
| 348 |
except Exception as error:
|
| 349 |
-
print(f"
|
| 350 |
return {
|
| 351 |
"primary_strategy": "GENERIC",
|
| 352 |
"reasoning": "Fallback due to analysis error",
|
|
@@ -359,12 +257,10 @@ async def find_strategy_specific_candidates(strategy, scan_count):
|
|
| 359 |
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
|
| 360 |
|
| 361 |
if not all_candidates:
|
| 362 |
-
print(f"⚠️ الماسح العام لم يجد أي مرشحين أوليين.")
|
| 363 |
return []
|
| 364 |
|
| 365 |
market_context = await data_manager_global.get_market_context_async()
|
| 366 |
if not market_context:
|
| 367 |
-
print("❌ Failed to get market context for strategy analysis")
|
| 368 |
return []
|
| 369 |
|
| 370 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
|
@@ -376,21 +272,13 @@ async def find_strategy_specific_candidates(strategy, scan_count):
|
|
| 376 |
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 377 |
|
| 378 |
if ohlcv_data and ohlcv_data[0]:
|
| 379 |
-
try:
|
| 380 |
-
updated_market_context = await data_manager_global.get_market_context_async()
|
| 381 |
-
if updated_market_context:
|
| 382 |
-
feature_processor.market_context = updated_market_context
|
| 383 |
-
except Exception as e:
|
| 384 |
-
print(f"⚠️ Failed to update market context for {candidate['symbol']}: {e}")
|
| 385 |
-
|
| 386 |
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
|
| 387 |
if processed:
|
| 388 |
processed_candidates.append(processed)
|
| 389 |
except Exception as e:
|
| 390 |
-
print(f"
|
| 391 |
|
| 392 |
if not processed_candidates:
|
| 393 |
-
print("⚠️ لم يتم معالجة أي مرشح بنجاح")
|
| 394 |
return []
|
| 395 |
|
| 396 |
if strategy != 'GENERIC':
|
|
@@ -402,76 +290,55 @@ async def find_strategy_specific_candidates(strategy, scan_count):
|
|
| 402 |
if strategy_score > 0.2:
|
| 403 |
candidate['strategy_match_score'] = strategy_score
|
| 404 |
strategy_candidates.append(candidate)
|
| 405 |
-
print(f"✅ {candidate['symbol']} مناسب لـ {strategy} (درجة: {strategy_score:.3f})")
|
| 406 |
|
| 407 |
sorted_candidates = sorted(strategy_candidates,
|
| 408 |
key=lambda x: x.get('strategy_match_score', 0),
|
| 409 |
reverse=True)
|
| 410 |
top_candidates = sorted_candidates[:15]
|
| 411 |
-
|
| 412 |
-
print(f"✅ تم اختيار {len(top_candidates)} مرشحًا لاستراتيجية {strategy}")
|
| 413 |
else:
|
| 414 |
sorted_candidates = sorted(processed_candidates,
|
| 415 |
key=lambda x: x.get('enhanced_final_score', 0),
|
| 416 |
reverse=True)
|
| 417 |
top_candidates = sorted_candidates[:15]
|
| 418 |
-
print(f"✅ تم اختيار {len(top_candidates)} مرشحًا للاستراتيجية العامة")
|
| 419 |
|
| 420 |
return top_candidates
|
| 421 |
|
| 422 |
except Exception as error:
|
| 423 |
-
print(f"
|
| 424 |
-
traceback.print_exc()
|
| 425 |
return []
|
| 426 |
|
| 427 |
async def find_new_opportunities_async():
|
| 428 |
-
print("🔍 Scanning for new opportunities with enhanced data analysis...")
|
| 429 |
try:
|
| 430 |
await r2_service_global.save_system_logs_async({
|
| 431 |
-
"opportunity_scan_started": True
|
| 432 |
})
|
| 433 |
|
| 434 |
-
print("🧠 Determining trading strategy with enhanced market analysis...")
|
| 435 |
market_context = await data_manager_global.get_market_context_async()
|
| 436 |
if not market_context:
|
| 437 |
-
print("❌ Failed to fetch market context. Cannot determine strategy.")
|
| 438 |
return
|
| 439 |
|
| 440 |
strategy_decision = await analyze_market_strategy(market_context)
|
| 441 |
|
| 442 |
-
print(f"🎯 Selected Strategy: {strategy_decision['primary_strategy']}")
|
| 443 |
-
print(f"📝 Reasoning: {strategy_decision['reasoning']}")
|
| 444 |
-
print(f"⚡ Risk Tolerance: {strategy_decision.get('risk_tolerance', 5)}/10")
|
| 445 |
-
print(f"🔍 Optimal Scan Count: {strategy_decision.get('optimal_scan_count', 100)}")
|
| 446 |
-
|
| 447 |
-
print(f"🔍 Finding top candidates using enhanced dynamic ranking...")
|
| 448 |
high_potential_candidates = await find_strategy_specific_candidates(
|
| 449 |
strategy_decision['primary_strategy'],
|
| 450 |
strategy_decision.get('optimal_scan_count', 100)
|
| 451 |
)
|
| 452 |
|
| 453 |
if not high_potential_candidates:
|
| 454 |
-
print("🔄 لا توجد مرشحين متخصصين، جلب مرشحين عامين...")
|
| 455 |
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
|
| 456 |
if high_potential_candidates:
|
| 457 |
for candidate in high_potential_candidates:
|
| 458 |
candidate['target_strategy'] = 'GENERIC'
|
| 459 |
-
print(f"✅ تم تحميل {len(high_potential_candidates)} مر��ح عام")
|
| 460 |
else:
|
| 461 |
-
print("✅ No new candidates found after dynamic ranking.")
|
| 462 |
-
await r2_service_global.save_system_logs_async({
|
| 463 |
-
"no_candidates_found": True, "strategy": strategy_decision['primary_strategy'],
|
| 464 |
-
"reason": "Scanner did not return any initial candidates."
|
| 465 |
-
})
|
| 466 |
return
|
| 467 |
|
| 468 |
all_processed_candidates = []
|
|
|
|
|
|
|
| 469 |
for index in range(0, len(high_potential_candidates), CHUNK_SIZE):
|
| 470 |
chunk = high_potential_candidates[index:index+CHUNK_SIZE]
|
| 471 |
-
|
| 472 |
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
|
| 473 |
|
| 474 |
-
print(f"⏳ Processing and scoring chunk {index//CHUNK_SIZE + 1}...")
|
| 475 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 476 |
if not updated_market_context:
|
| 477 |
updated_market_context = market_context
|
|
@@ -486,7 +353,6 @@ async def find_new_opportunities_async():
|
|
| 486 |
await asyncio.sleep(1)
|
| 487 |
|
| 488 |
if not all_processed_candidates:
|
| 489 |
-
print("❌ No candidates were processed successfully.")
|
| 490 |
return
|
| 491 |
|
| 492 |
updated_market_context = await data_manager_global.get_market_context_async()
|
|
@@ -494,74 +360,46 @@ async def find_new_opportunities_async():
|
|
| 494 |
updated_market_context = market_context
|
| 495 |
|
| 496 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
|
|
|
| 497 |
top_candidates = feature_processor.filter_top_candidates(all_processed_candidates, OPPORTUNITY_COUNT)
|
| 498 |
|
| 499 |
-
print(f"✅ Identified {len(top_candidates)} top candidates after final scoring.")
|
| 500 |
-
|
| 501 |
await r2_service_global.save_candidates_data_async(
|
| 502 |
candidates_data=top_candidates,
|
| 503 |
reanalysis_data={
|
| 504 |
"strategy_used": strategy_decision,
|
| 505 |
-
"market_conditions": market_context
|
| 506 |
-
"enhanced_analysis": True
|
| 507 |
}
|
| 508 |
)
|
| 509 |
|
| 510 |
if not top_candidates:
|
| 511 |
-
print("❌ No strong candidates left after final filtering.")
|
| 512 |
-
await r2_service_global.save_system_logs_async({
|
| 513 |
-
"no_strong_candidates": True,
|
| 514 |
-
"strategy": strategy_decision['primary_strategy'],
|
| 515 |
-
"initial_candidates_count": len(high_potential_candidates),
|
| 516 |
-
"enhanced_analysis": True
|
| 517 |
-
})
|
| 518 |
return
|
| 519 |
|
| 520 |
-
print("🧠 Getting LLM analysis for top candidates with enhanced data...")
|
| 521 |
-
|
| 522 |
for candidate in top_candidates:
|
| 523 |
try:
|
| 524 |
if not await validate_candidate_data_enhanced(candidate):
|
| 525 |
-
print(f"⚠️ Skipping {candidate.get('symbol')} due to quality issues")
|
| 526 |
continue
|
| 527 |
|
| 528 |
llm_analysis_data = await llm_service_global.get_trading_decision(candidate)
|
| 529 |
|
| 530 |
if not llm_analysis_data:
|
| 531 |
-
print(f"⚠️ LLM analysis failed for {candidate['symbol']}. Moving to next.")
|
| 532 |
continue
|
| 533 |
|
| 534 |
if llm_analysis_data.get('action') == "HOLD":
|
| 535 |
-
print(f"🧠 LLM decided to HOLD on {candidate['symbol']}. Moving to next.")
|
| 536 |
continue
|
| 537 |
|
| 538 |
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
|
| 539 |
final_strategy = llm_analysis_data.get('strategy')
|
| 540 |
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
|
| 541 |
|
| 542 |
-
if not final_strategy or final_strategy == 'unknown'
|
| 543 |
final_strategy = candidate_strategy
|
| 544 |
llm_analysis_data['strategy'] = final_strategy
|
| 545 |
-
print(f"🔧 تصحيح استراتيجية LLM لـ {candidate['symbol']}: {final_strategy}")
|
| 546 |
-
|
| 547 |
-
print(f"🎯 الاستراتيجية النهائية: {final_strategy}")
|
| 548 |
-
|
| 549 |
-
print("\n========================================================")
|
| 550 |
-
print(f"💎💎💎 New Trading Opportunity Identified! 💎💎💎")
|
| 551 |
-
print(f" Symbol: {candidate['symbol']}")
|
| 552 |
-
print(f" Action: {llm_analysis_data.get('action')}")
|
| 553 |
-
print(f" Strategy: {final_strategy}")
|
| 554 |
-
print(f" Reasoning: {llm_analysis_data.get('reasoning')}")
|
| 555 |
-
print(f" Confidence: {llm_analysis_data.get('confidence_level')}")
|
| 556 |
-
print("========================================================\n")
|
| 557 |
|
| 558 |
await r2_service_global.save_system_logs_async({
|
| 559 |
"new_opportunity_found": True,
|
| 560 |
"symbol": candidate['symbol'],
|
| 561 |
"action": llm_analysis_data.get('action'),
|
| 562 |
-
"strategy": final_strategy
|
| 563 |
-
"confidence": llm_analysis_data.get('confidence_level', 0),
|
| 564 |
-
"enhanced_analysis": True
|
| 565 |
})
|
| 566 |
|
| 567 |
return {
|
|
@@ -572,19 +410,15 @@ async def find_new_opportunities_async():
|
|
| 572 |
}
|
| 573 |
|
| 574 |
except Exception as error:
|
| 575 |
-
print(f"
|
| 576 |
-
traceback.print_exc()
|
| 577 |
|
| 578 |
-
print("✅ Cycle finished. No actionable BUY/SELL opportunities found by LLM.")
|
| 579 |
return None
|
| 580 |
|
| 581 |
except Exception as error:
|
| 582 |
-
print(f"
|
| 583 |
-
traceback.print_exc()
|
| 584 |
await r2_service_global.save_system_logs_async({
|
| 585 |
"opportunity_scan_error": True,
|
| 586 |
-
"error": str(error)
|
| 587 |
-
"enhanced_analysis": True
|
| 588 |
})
|
| 589 |
return None
|
| 590 |
|
|
@@ -596,34 +430,18 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 596 |
current_time = datetime.now()
|
| 597 |
hold_minutes = (current_time - entry_time).total_seconds() / 60
|
| 598 |
|
| 599 |
-
print(f"⏳ Re-analyzing trade: {symbol} (held for {hold_minutes:.1f} minutes)")
|
| 600 |
-
|
| 601 |
original_strategy = trade_data.get('strategy')
|
| 602 |
if not original_strategy or original_strategy == 'unknown':
|
| 603 |
original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
reanalysis_context = {
|
| 607 |
-
'trade_data': {
|
| 608 |
-
'symbol': trade_data.get('symbol'),
|
| 609 |
-
'entry_price': trade_data.get('entry_price'),
|
| 610 |
-
'entry_time': trade_data.get('entry_timestamp'),
|
| 611 |
-
'hold_minutes': hold_minutes,
|
| 612 |
-
'strategy': original_strategy
|
| 613 |
-
}
|
| 614 |
-
}
|
| 615 |
-
|
| 616 |
try:
|
| 617 |
market_context = await data_manager_global.get_market_context_async()
|
| 618 |
-
except Exception
|
| 619 |
-
print(f"⚠️ Failed to get market context: {error}. Using basic market data...")
|
| 620 |
market_context = {'btc_sentiment': 'NEUTRAL'}
|
| 621 |
|
| 622 |
symbol_with_reasons = [{'symbol': symbol, 'reasons': ['re-analysis']}]
|
| 623 |
-
|
| 624 |
ohlcv_data_list = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 625 |
if not ohlcv_data_list:
|
| 626 |
-
print(f"❌ Failed to fetch latest data for {symbol}.")
|
| 627 |
return None
|
| 628 |
|
| 629 |
raw_data = ohlcv_data_list[0]
|
|
@@ -631,50 +449,39 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 631 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 632 |
if updated_market_context:
|
| 633 |
market_context = updated_market_context
|
| 634 |
-
except Exception
|
| 635 |
-
|
| 636 |
|
| 637 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 638 |
processed_data = await feature_processor.process_and_score_symbol(raw_data)
|
| 639 |
|
| 640 |
if not processed_data:
|
| 641 |
-
print(f"❌ Failed to process latest data for {symbol}.")
|
| 642 |
return None
|
| 643 |
|
| 644 |
await r2_service_global.save_candidates_data_async(
|
| 645 |
candidates_data=None,
|
| 646 |
reanalysis_data={
|
| 647 |
'market_context': market_context,
|
| 648 |
-
'processed_data': processed_data
|
| 649 |
-
'enhanced_analysis': True
|
| 650 |
}
|
| 651 |
)
|
| 652 |
|
| 653 |
-
print(f"🧠 Getting LLM re-analysis for {symbol} with enhanced data...")
|
| 654 |
try:
|
| 655 |
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
|
| 656 |
-
|
| 657 |
-
except Exception as error:
|
| 658 |
-
print(f"❌ LLM re-analysis error: {error}. Falling back to local.")
|
| 659 |
re_analysis_decision = local_re_analyze_trade(trade_data, processed_data)
|
| 660 |
-
source = 'local_fallback'
|
| 661 |
|
| 662 |
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
|
| 663 |
|
| 664 |
-
if not final_decision.get('strategy')
|
| 665 |
final_decision['strategy'] = original_strategy
|
| 666 |
-
print(f"🔧 Final re-analysis strategy fix for {symbol}: {original_strategy}")
|
| 667 |
-
|
| 668 |
-
print(f"✅ Re-analysis decision for {symbol}: {final_decision.get('action')}. Strategy: {final_decision.get('strategy')}. Source: {source}")
|
| 669 |
|
| 670 |
await r2_service_global.save_system_logs_async({
|
| 671 |
"trade_reanalyzed": True,
|
| 672 |
"symbol": symbol,
|
| 673 |
"action": final_decision.get('action'),
|
| 674 |
-
"hold_minutes": hold_minutes,
|
| 675 |
-
"
|
| 676 |
-
"strategy": final_decision.get('strategy'),
|
| 677 |
-
"enhanced_analysis": True
|
| 678 |
})
|
| 679 |
|
| 680 |
return {
|
|
@@ -685,35 +492,26 @@ async def re_analyze_open_trade_async(trade_data):
|
|
| 685 |
}
|
| 686 |
|
| 687 |
except Exception as error:
|
| 688 |
-
print(f"
|
| 689 |
-
traceback.print_exc()
|
| 690 |
await r2_service_global.save_system_logs_async({
|
| 691 |
"reanalysis_error": True,
|
| 692 |
"symbol": symbol,
|
| 693 |
-
"error": str(error)
|
| 694 |
-
"enhanced_analysis": True
|
| 695 |
})
|
| 696 |
return None
|
| 697 |
|
| 698 |
async def run_bot_cycle_async():
|
| 699 |
-
print(f"\n{'='*70}")
|
| 700 |
-
print(f"⏳ New cycle initiated at: {datetime.now().isoformat()}")
|
| 701 |
-
print(f"{'='*70}")
|
| 702 |
-
|
| 703 |
try:
|
| 704 |
await r2_service_global.save_system_logs_async({
|
| 705 |
-
"cycle_started": True
|
| 706 |
-
"enhanced_analysis": True
|
| 707 |
})
|
| 708 |
|
| 709 |
if not r2_service_global.acquire_lock():
|
| 710 |
-
print("❌ Failed to acquire lock. Skipping cycle.")
|
| 711 |
return
|
| 712 |
|
| 713 |
open_trades = []
|
| 714 |
try:
|
| 715 |
open_trades = await r2_service_global.get_open_trades_async()
|
| 716 |
-
print(f"✅ Found {len(open_trades)} open trade(s).")
|
| 717 |
|
| 718 |
trades_fixed = 0
|
| 719 |
for trade in open_trades:
|
|
@@ -721,10 +519,8 @@ async def run_bot_cycle_async():
|
|
| 721 |
original_strategy = trade.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 722 |
trade['strategy'] = original_strategy
|
| 723 |
trades_fixed += 1
|
| 724 |
-
print(f"🔧 Fixed missing strategy for {trade['symbol']}: {trade['strategy']}")
|
| 725 |
|
| 726 |
if trades_fixed > 0:
|
| 727 |
-
print(f"✅ Fixed strategies for {trades_fixed} trades.")
|
| 728 |
await r2_service_global.save_open_trades_async(open_trades)
|
| 729 |
|
| 730 |
should_look_for_new_trade = not open_trades
|
|
@@ -737,12 +533,10 @@ async def run_bot_cycle_async():
|
|
| 737 |
]
|
| 738 |
|
| 739 |
if trades_to_reanalyze:
|
| 740 |
-
print(f"🔍 Re-analyzing {len(trades_to_reanalyze)} trade(s)...")
|
| 741 |
for trade in trades_to_reanalyze:
|
| 742 |
result = await re_analyze_open_trade_async(trade)
|
| 743 |
if result and result['decision'].get('action') == "CLOSE_TRADE":
|
| 744 |
await r2_service_global.close_trade_async(trade, result['current_price'])
|
| 745 |
-
print(f"✅ Trade for {trade['symbol']} CLOSED. Strategy: {trade.get('strategy', 'unknown')}")
|
| 746 |
if learning_engine_global and learning_engine_global.initialized:
|
| 747 |
trade_with_strategy = trade.copy()
|
| 748 |
strategy = result['decision'].get('strategy', trade.get('strategy', 'GENERIC'))
|
|
@@ -751,42 +545,25 @@ async def run_bot_cycle_async():
|
|
| 751 |
should_look_for_new_trade = True
|
| 752 |
elif result and result['decision'].get('action') == "UPDATE_TRADE":
|
| 753 |
await r2_service_global.update_trade_async(trade, result['decision'])
|
| 754 |
-
print(f"✅ Trade for {trade['symbol']} UPDATED. Strategy: {trade.get('strategy', 'unknown')}")
|
| 755 |
-
else:
|
| 756 |
-
print(f"✅ Trade for {trade['symbol']} is on HOLD. Strategy: {trade.get('strategy', 'unknown')}")
|
| 757 |
-
else:
|
| 758 |
-
print("✅ No trades due for re-analysis yet.")
|
| 759 |
|
| 760 |
if should_look_for_new_trade:
|
| 761 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 762 |
current_capital = portfolio_state.get("current_capital_usd", 0)
|
| 763 |
|
| 764 |
-
print(f"💰 Current available capital: ${current_capital:.2f}")
|
| 765 |
-
|
| 766 |
if current_capital <= 0:
|
| 767 |
-
print("⚠️ Current capital is 0. Checking for potential calculation errors...")
|
| 768 |
-
|
| 769 |
if len(open_trades) == 0:
|
| 770 |
-
print("🔄 No open trades but capital is 0. This might be an error.")
|
| 771 |
-
print("💡 Attempting to recover capital state...")
|
| 772 |
-
|
| 773 |
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
|
| 774 |
if initial_capital > 0:
|
| 775 |
portfolio_state["current_capital_usd"] = initial_capital
|
| 776 |
portfolio_state["invested_capital_usd"] = 0.0
|
| 777 |
await r2_service_global.save_portfolio_state_async(portfolio_state)
|
| 778 |
-
print(f"✅ Reset capital to initial amount: ${initial_capital:.2f}")
|
| 779 |
current_capital = initial_capital
|
| 780 |
|
| 781 |
if current_capital > 1:
|
| 782 |
-
print(f"✅ Capital available (${current_capital:.2f}). Scanning for new opportunities...")
|
| 783 |
new_opportunity = await find_new_opportunities_async()
|
| 784 |
if new_opportunity:
|
| 785 |
-
print(f"✅ Opportunity for {new_opportunity['symbol']} confirmed! Saving trade. Strategy: {new_opportunity.get('strategy')}")
|
| 786 |
-
|
| 787 |
if not new_opportunity['decision'].get('strategy'):
|
| 788 |
new_opportunity['decision']['strategy'] = new_opportunity.get('strategy', 'GENERIC')
|
| 789 |
-
print(f"🔧 Final pre-save strategy fix: {new_opportunity['decision']['strategy']}")
|
| 790 |
|
| 791 |
await r2_service_global.save_new_trade_async(
|
| 792 |
new_opportunity['symbol'],
|
|
@@ -798,35 +575,26 @@ async def run_bot_cycle_async():
|
|
| 798 |
if trade['symbol'] == new_opportunity['symbol']:
|
| 799 |
asyncio.create_task(realtime_monitor._monitor_single_trade(trade))
|
| 800 |
break
|
| 801 |
-
else:
|
| 802 |
-
print("✅ Scan complete. No actionable opportunities identified.")
|
| 803 |
-
else:
|
| 804 |
-
print(f"😴 No available capital (${current_capital:.2f}). Waiting for current trade to close.")
|
| 805 |
|
| 806 |
finally:
|
| 807 |
-
print("✅ Cycle finished. Releasing lock.")
|
| 808 |
r2_service_global.release_lock()
|
| 809 |
await r2_service_global.save_system_logs_async({
|
| 810 |
"cycle_completed": True,
|
| 811 |
-
"open_trades": len(open_trades)
|
| 812 |
-
"enhanced_analysis": True
|
| 813 |
})
|
| 814 |
|
| 815 |
except Exception as error:
|
| 816 |
-
print(f"
|
| 817 |
-
traceback.print_exc()
|
| 818 |
await r2_service_global.save_system_logs_async({
|
| 819 |
"cycle_error": True,
|
| 820 |
-
"error": str(error)
|
| 821 |
-
"enhanced_analysis": True
|
| 822 |
})
|
| 823 |
if r2_service_global.lock_acquired:
|
| 824 |
r2_service_global.release_lock()
|
| 825 |
|
| 826 |
@asynccontextmanager
|
| 827 |
async def lifespan(application: FastAPI):
|
| 828 |
-
global r2_service_global, data_manager_global, llm_service_global, learning_engine_global, realtime_monitor
|
| 829 |
-
print("===== Application Startup =====")
|
| 830 |
|
| 831 |
try:
|
| 832 |
r2_service_global = R2Service()
|
|
@@ -836,36 +604,30 @@ async def lifespan(application: FastAPI):
|
|
| 836 |
data_manager_global = DataManager(contracts_database)
|
| 837 |
await data_manager_global.initialize()
|
| 838 |
|
|
|
|
|
|
|
| 839 |
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
|
| 840 |
await learning_engine_global.initialize_enhanced()
|
| 841 |
|
| 842 |
await learning_engine_global.force_strategy_learning()
|
| 843 |
|
| 844 |
-
if learning_engine_global.initialized:
|
| 845 |
-
weights = await learning_engine_global.get_optimized_strategy_weights("bull_market")
|
| 846 |
-
print(f"🎯 الأوزان المحملة: {weights}")
|
| 847 |
-
|
| 848 |
realtime_monitor = RealTimeTradeMonitor()
|
| 849 |
|
| 850 |
asyncio.create_task(monitor_market_async())
|
| 851 |
asyncio.create_task(realtime_monitor.start_monitoring())
|
| 852 |
|
| 853 |
await r2_service_global.save_system_logs_async({
|
| 854 |
-
"application_started": True
|
| 855 |
-
"enhanced_analysis": True
|
| 856 |
})
|
| 857 |
|
| 858 |
-
print("\n✅ All services initialized. Application is ready.\n")
|
| 859 |
yield
|
| 860 |
|
| 861 |
except Exception as error:
|
| 862 |
-
print(f"
|
| 863 |
-
traceback.print_exc()
|
| 864 |
if r2_service_global:
|
| 865 |
await r2_service_global.save_system_logs_async({
|
| 866 |
"application_startup_failed": True,
|
| 867 |
-
"error": str(error)
|
| 868 |
-
"enhanced_analysis": True
|
| 869 |
})
|
| 870 |
raise
|
| 871 |
finally:
|
|
@@ -876,7 +638,7 @@ application = FastAPI(lifespan=lifespan)
|
|
| 876 |
@application.get("/run-cycle")
|
| 877 |
async def run_cycle_api():
|
| 878 |
asyncio.create_task(run_bot_cycle_async())
|
| 879 |
-
return {"message": "Bot cycle initiated
|
| 880 |
|
| 881 |
@application.get("/health")
|
| 882 |
async def health_check():
|
|
@@ -899,8 +661,7 @@ async def health_check():
|
|
| 899 |
"realtime_monitor": "running" if realtime_monitor and realtime_monitor.is_running else "stopped"
|
| 900 |
},
|
| 901 |
"market_state_ok": state.MARKET_STATE_OK,
|
| 902 |
-
"learning_engine": learning_metrics
|
| 903 |
-
"api_usage_stats": api_stats.get('api_usage', {})
|
| 904 |
}
|
| 905 |
|
| 906 |
@application.get("/stats")
|
|
@@ -909,10 +670,8 @@ async def get_performance_stats():
|
|
| 909 |
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
|
| 910 |
|
| 911 |
learning_stats = {}
|
| 912 |
-
improvement_suggestions = []
|
| 913 |
if learning_engine_global and learning_engine_global.initialized:
|
| 914 |
learning_stats = await learning_engine_global.calculate_performance_metrics()
|
| 915 |
-
improvement_suggestions = await learning_engine_global.suggest_improvements()
|
| 916 |
|
| 917 |
api_stats = {}
|
| 918 |
if data_manager_global:
|
|
@@ -923,20 +682,13 @@ async def get_performance_stats():
|
|
| 923 |
"data_manager": api_stats,
|
| 924 |
"market_state": {
|
| 925 |
"is_healthy": state.MARKET_STATE_OK,
|
| 926 |
-
"description": "Market is healthy for trading" if state.MARKET_STATE_OK else "Market conditions are unfavorable",
|
| 927 |
"context": market_context
|
| 928 |
},
|
| 929 |
"realtime_monitoring": {
|
| 930 |
"active_trades": len(realtime_monitor.monitoring_tasks) if realtime_monitor else 0,
|
| 931 |
"is_running": realtime_monitor.is_running if realtime_monitor else False
|
| 932 |
},
|
| 933 |
-
"learning_engine": learning_stats
|
| 934 |
-
"improvement_suggestions": improvement_suggestions,
|
| 935 |
-
"enhanced_features": {
|
| 936 |
-
"netflow_analysis": True,
|
| 937 |
-
"enhanced_whale_tracking": True,
|
| 938 |
-
"dynamic_strategy_selection": True
|
| 939 |
-
}
|
| 940 |
}
|
| 941 |
return stats
|
| 942 |
except Exception as error:
|
|
@@ -953,45 +705,39 @@ async def get_logs_status():
|
|
| 953 |
"open_trades_count": len(open_trades),
|
| 954 |
"current_capital": portfolio_state.get("current_capital_usd", 0),
|
| 955 |
"total_trades": portfolio_state.get("total_trades", 0),
|
| 956 |
-
"timestamp": datetime.now().isoformat()
|
| 957 |
-
"enhanced_analysis": True
|
| 958 |
}
|
| 959 |
except Exception as error:
|
| 960 |
raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
|
| 961 |
|
| 962 |
async def cleanup_on_shutdown():
|
| 963 |
global r2_service_global, data_manager_global, realtime_monitor, learning_engine_global
|
| 964 |
-
print("
|
| 965 |
|
| 966 |
if r2_service_global:
|
| 967 |
try:
|
| 968 |
await r2_service_global.save_system_logs_async({
|
| 969 |
-
"application_shutdown": True
|
| 970 |
-
"enhanced_analysis": True
|
| 971 |
})
|
| 972 |
-
except Exception
|
| 973 |
-
|
| 974 |
|
| 975 |
if learning_engine_global and learning_engine_global.initialized:
|
| 976 |
try:
|
| 977 |
await learning_engine_global.save_weights_to_r2()
|
| 978 |
await learning_engine_global.save_performance_history()
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
print(f"⚠️ Failed to save learning engine data: {e}")
|
| 982 |
|
| 983 |
if realtime_monitor:
|
| 984 |
realtime_monitor.stop_monitoring()
|
| 985 |
|
| 986 |
if r2_service_global and r2_service_global.lock_acquired:
|
| 987 |
r2_service_global.release_lock()
|
| 988 |
-
print("✅ Lock released.")
|
| 989 |
if data_manager_global:
|
| 990 |
await data_manager_global.close()
|
| 991 |
-
print("✅ Cleanup completed.")
|
| 992 |
|
| 993 |
def signal_handler(signum, frame):
|
| 994 |
-
print(f"\n⚠️ Received signal {signum}")
|
| 995 |
asyncio.create_task(cleanup_on_shutdown())
|
| 996 |
sys.exit(0)
|
| 997 |
|
|
|
|
| 1 |
+
import os, traceback, signal, sys, uvicorn, asyncio, json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from contextlib import asynccontextmanager
|
| 3 |
+
from fastapi import FastAPI, HTTPException
|
| 4 |
+
from datetime import datetime
|
| 5 |
from r2 import R2Service
|
| 6 |
from LLM import LLMService, local_analyze_opportunity, local_re_analyze_trade
|
| 7 |
from data_manager import DataManager
|
| 8 |
from ML import MLProcessor as FeatureProcessor
|
| 9 |
from learning_engine import LearningEngine
|
| 10 |
+
from sentiment_news import SentimentAnalyzer
|
|
|
|
| 11 |
import state
|
|
|
|
|
|
|
|
|
|
| 12 |
from helpers import safe_float_conversion, _apply_patience_logic
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
r2_service_global = None
|
| 15 |
data_manager_global = None
|
| 16 |
llm_service_global = None
|
| 17 |
learning_engine_global = None
|
| 18 |
realtime_monitor = None
|
| 19 |
+
sentiment_analyzer_global = None
|
| 20 |
|
| 21 |
class RealTimeTradeMonitor:
|
| 22 |
def __init__(self):
|
|
|
|
| 25 |
|
| 26 |
async def start_monitoring(self):
|
| 27 |
self.is_running = True
|
|
|
|
| 28 |
|
| 29 |
while self.is_running:
|
| 30 |
try:
|
|
|
|
| 44 |
await asyncio.sleep(10)
|
| 45 |
|
| 46 |
except Exception as error:
|
| 47 |
+
print(f"Real-time monitor error: {error}")
|
| 48 |
await asyncio.sleep(30)
|
| 49 |
|
| 50 |
async def _monitor_single_trade(self, trade):
|
| 51 |
symbol = trade['symbol']
|
|
|
|
|
|
|
| 52 |
|
| 53 |
while symbol in self.monitoring_tasks and self.is_running:
|
| 54 |
try:
|
|
|
|
| 75 |
dynamic_stop = current_price * 0.98
|
| 76 |
if dynamic_stop > (stop_loss or 0):
|
| 77 |
trade['stop_loss'] = dynamic_stop
|
|
|
|
| 78 |
|
| 79 |
if should_close:
|
|
|
|
|
|
|
| 80 |
if r2_service_global.acquire_lock():
|
| 81 |
try:
|
| 82 |
await r2_service_global.close_trade_async(trade, current_price)
|
|
|
|
| 83 |
|
| 84 |
if learning_engine_global and learning_engine_global.initialized:
|
| 85 |
await learning_engine_global.analyze_trade_outcome(trade, 'CLOSED_BY_MONITOR')
|
|
|
|
| 96 |
await asyncio.sleep(15)
|
| 97 |
|
| 98 |
except Exception as error:
|
| 99 |
+
print(f"Real-time monitoring error for {symbol}: {error}")
|
| 100 |
await asyncio.sleep(30)
|
| 101 |
|
| 102 |
def stop_monitoring(self):
|
| 103 |
self.is_running = False
|
| 104 |
self.monitoring_tasks.clear()
|
|
|
|
| 105 |
|
| 106 |
async def monitor_market_async():
|
| 107 |
+
global data_manager_global, sentiment_analyzer_global
|
| 108 |
|
| 109 |
init_attempts = 0
|
| 110 |
while data_manager_global is None and init_attempts < 10:
|
|
|
|
| 111 |
await asyncio.sleep(3)
|
| 112 |
init_attempts += 1
|
| 113 |
|
| 114 |
if data_manager_global is None:
|
|
|
|
| 115 |
return
|
| 116 |
|
| 117 |
while True:
|
| 118 |
try:
|
| 119 |
+
market_context = await sentiment_analyzer_global.get_market_sentiment()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
if not market_context:
|
|
|
|
| 122 |
state.MARKET_STATE_OK = True
|
| 123 |
await asyncio.sleep(60)
|
| 124 |
continue
|
| 125 |
|
| 126 |
whale_analysis = market_context.get('general_whale_activity', {})
|
|
|
|
| 127 |
is_critical = whale_analysis.get('critical_alert', False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
bitcoin_sentiment = market_context.get('btc_sentiment')
|
| 130 |
fear_greed_index = market_context.get('fear_and_greed_index')
|
|
|
|
| 134 |
|
| 135 |
if is_critical:
|
| 136 |
should_halt_trading = True
|
| 137 |
+
halt_reason = f"CRITICAL whale activity detected"
|
| 138 |
elif bitcoin_sentiment == 'BEARISH' and (fear_greed_index is not None and fear_greed_index < 30):
|
| 139 |
should_halt_trading = True
|
| 140 |
+
halt_reason = f"Bearish market conditions"
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
if should_halt_trading:
|
|
|
|
| 143 |
state.MARKET_STATE_OK = False
|
| 144 |
+
await r2_service_global.save_system_logs_async({
|
| 145 |
+
"market_halt": True,
|
| 146 |
+
"reason": halt_reason
|
| 147 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
else:
|
| 149 |
if not state.MARKET_STATE_OK:
|
| 150 |
+
print("Market conditions improved. Resuming normal operations.")
|
| 151 |
state.MARKET_STATE_OK = True
|
| 152 |
|
| 153 |
await asyncio.sleep(60)
|
| 154 |
except Exception as error:
|
| 155 |
+
print(f"Error during market monitoring: {error}")
|
|
|
|
| 156 |
state.MARKET_STATE_OK = True
|
| 157 |
await asyncio.sleep(60)
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
async def validate_candidate_data_enhanced(candidate):
|
| 160 |
try:
|
| 161 |
required_fields = ['symbol', 'current_price', 'final_score', 'enhanced_final_score']
|
|
|
|
| 168 |
candidate['final_score'] = safe_float_conversion(candidate.get('final_score'), 0.5)
|
| 169 |
candidate['enhanced_final_score'] = safe_float_conversion(candidate.get('enhanced_final_score'), candidate['final_score'])
|
| 170 |
|
| 171 |
+
if 'reasons_for_candidacy' not in candidate:
|
| 172 |
candidate['reasons_for_candidacy'] = ['unknown_reason']
|
| 173 |
|
| 174 |
+
if 'sentiment_data' not in candidate:
|
| 175 |
candidate['sentiment_data'] = {
|
| 176 |
'btc_sentiment': 'NEUTRAL',
|
| 177 |
'fear_and_greed_index': 50,
|
|
|
|
| 184 |
if 'strategy_scores' not in candidate:
|
| 185 |
candidate['strategy_scores'] = {}
|
| 186 |
|
| 187 |
+
if 'target_strategy' not in candidate:
|
|
|
|
|
|
|
|
|
|
| 188 |
candidate['target_strategy'] = 'GENERIC'
|
| 189 |
|
| 190 |
return True
|
| 191 |
|
| 192 |
except Exception as error:
|
| 193 |
+
print(f"Failed to validate candidate data for {candidate.get('symbol')}: {error}")
|
| 194 |
return False
|
| 195 |
|
| 196 |
async def analyze_market_strategy(market_context):
|
| 197 |
try:
|
| 198 |
whale_analysis = market_context.get('general_whale_activity', {})
|
| 199 |
netflow_analysis = whale_analysis.get('netflow_analysis', {})
|
|
|
|
| 200 |
|
| 201 |
prompt = f"""
|
| 202 |
+
Analyze current market conditions and determine trading strategy.
|
| 203 |
|
| 204 |
+
Market Data:
|
|
|
|
| 205 |
- BTC Sentiment: {market_context.get('btc_sentiment')}
|
| 206 |
- Fear & Greed Index: {market_context.get('fear_and_greed_index')}
|
| 207 |
- Whale Analysis: {whale_analysis.get('sentiment')}
|
| 208 |
+
- Critical Alert: {whale_analysis.get('critical_alert')}
|
| 209 |
+
- Net Flow: ${netflow_analysis.get('net_flow', 0):,.0f}
|
| 210 |
+
|
| 211 |
+
Output JSON:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
{{
|
| 213 |
"primary_strategy": "STRATEGY_NAME",
|
| 214 |
+
"reasoning": "Brief reasoning",
|
| 215 |
"risk_tolerance": 5,
|
| 216 |
"optimal_scan_count": 100
|
| 217 |
}}
|
|
|
|
| 220 |
response = await llm_service_global._call_llm(prompt)
|
| 221 |
|
| 222 |
try:
|
| 223 |
+
from helpers import parse_json_from_response
|
| 224 |
+
json_str = parse_json_from_response(response)
|
| 225 |
+
strategy_data = json.loads(json_str)
|
| 226 |
except:
|
| 227 |
net_flow = netflow_analysis.get('net_flow', 0)
|
| 228 |
if net_flow > 1000000:
|
| 229 |
fallback_strategy = "AGGRESSIVE_GROWTH"
|
|
|
|
| 230 |
elif net_flow < -1000000:
|
| 231 |
fallback_strategy = "CONSERVATIVE"
|
|
|
|
| 232 |
elif whale_analysis.get('critical_alert'):
|
| 233 |
fallback_strategy = "CONSERVATIVE"
|
|
|
|
| 234 |
else:
|
| 235 |
fallback_strategy = "GENERIC"
|
|
|
|
| 236 |
|
| 237 |
strategy_data = {
|
| 238 |
"primary_strategy": fallback_strategy,
|
| 239 |
+
"reasoning": "Fallback strategy",
|
| 240 |
"risk_tolerance": 5,
|
| 241 |
"optimal_scan_count": 100,
|
| 242 |
}
|
|
|
|
| 244 |
return strategy_data
|
| 245 |
|
| 246 |
except Exception as error:
|
| 247 |
+
print(f"Failed to analyze market strategy: {error}")
|
| 248 |
return {
|
| 249 |
"primary_strategy": "GENERIC",
|
| 250 |
"reasoning": "Fallback due to analysis error",
|
|
|
|
| 257 |
all_candidates = await data_manager_global.find_high_potential_candidates(scan_count * 2)
|
| 258 |
|
| 259 |
if not all_candidates:
|
|
|
|
| 260 |
return []
|
| 261 |
|
| 262 |
market_context = await data_manager_global.get_market_context_async()
|
| 263 |
if not market_context:
|
|
|
|
| 264 |
return []
|
| 265 |
|
| 266 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
|
|
|
| 272 |
ohlcv_data = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 273 |
|
| 274 |
if ohlcv_data and ohlcv_data[0]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
processed = await feature_processor.process_and_score_symbol_enhanced(ohlcv_data[0])
|
| 276 |
if processed:
|
| 277 |
processed_candidates.append(processed)
|
| 278 |
except Exception as e:
|
| 279 |
+
print(f"Failed to process {candidate.get('symbol')}: {e}")
|
| 280 |
|
| 281 |
if not processed_candidates:
|
|
|
|
| 282 |
return []
|
| 283 |
|
| 284 |
if strategy != 'GENERIC':
|
|
|
|
| 290 |
if strategy_score > 0.2:
|
| 291 |
candidate['strategy_match_score'] = strategy_score
|
| 292 |
strategy_candidates.append(candidate)
|
|
|
|
| 293 |
|
| 294 |
sorted_candidates = sorted(strategy_candidates,
|
| 295 |
key=lambda x: x.get('strategy_match_score', 0),
|
| 296 |
reverse=True)
|
| 297 |
top_candidates = sorted_candidates[:15]
|
|
|
|
|
|
|
| 298 |
else:
|
| 299 |
sorted_candidates = sorted(processed_candidates,
|
| 300 |
key=lambda x: x.get('enhanced_final_score', 0),
|
| 301 |
reverse=True)
|
| 302 |
top_candidates = sorted_candidates[:15]
|
|
|
|
| 303 |
|
| 304 |
return top_candidates
|
| 305 |
|
| 306 |
except Exception as error:
|
| 307 |
+
print(f"Advanced filtering failed: {error}")
|
|
|
|
| 308 |
return []
|
| 309 |
|
| 310 |
async def find_new_opportunities_async():
|
|
|
|
| 311 |
try:
|
| 312 |
await r2_service_global.save_system_logs_async({
|
| 313 |
+
"opportunity_scan_started": True
|
| 314 |
})
|
| 315 |
|
|
|
|
| 316 |
market_context = await data_manager_global.get_market_context_async()
|
| 317 |
if not market_context:
|
|
|
|
| 318 |
return
|
| 319 |
|
| 320 |
strategy_decision = await analyze_market_strategy(market_context)
|
| 321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
high_potential_candidates = await find_strategy_specific_candidates(
|
| 323 |
strategy_decision['primary_strategy'],
|
| 324 |
strategy_decision.get('optimal_scan_count', 100)
|
| 325 |
)
|
| 326 |
|
| 327 |
if not high_potential_candidates:
|
|
|
|
| 328 |
high_potential_candidates = await data_manager_global.find_high_potential_candidates(20)
|
| 329 |
if high_potential_candidates:
|
| 330 |
for candidate in high_potential_candidates:
|
| 331 |
candidate['target_strategy'] = 'GENERIC'
|
|
|
|
| 332 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
return
|
| 334 |
|
| 335 |
all_processed_candidates = []
|
| 336 |
+
CHUNK_SIZE = 5
|
| 337 |
+
|
| 338 |
for index in range(0, len(high_potential_candidates), CHUNK_SIZE):
|
| 339 |
chunk = high_potential_candidates[index:index+CHUNK_SIZE]
|
|
|
|
| 340 |
chunk_data = await data_manager_global.get_fast_pass_data_async(chunk)
|
| 341 |
|
|
|
|
| 342 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 343 |
if not updated_market_context:
|
| 344 |
updated_market_context = market_context
|
|
|
|
| 353 |
await asyncio.sleep(1)
|
| 354 |
|
| 355 |
if not all_processed_candidates:
|
|
|
|
| 356 |
return
|
| 357 |
|
| 358 |
updated_market_context = await data_manager_global.get_market_context_async()
|
|
|
|
| 360 |
updated_market_context = market_context
|
| 361 |
|
| 362 |
feature_processor = FeatureProcessor(updated_market_context, data_manager_global, learning_engine_global)
|
| 363 |
+
OPPORTUNITY_COUNT = 10
|
| 364 |
top_candidates = feature_processor.filter_top_candidates(all_processed_candidates, OPPORTUNITY_COUNT)
|
| 365 |
|
|
|
|
|
|
|
| 366 |
await r2_service_global.save_candidates_data_async(
|
| 367 |
candidates_data=top_candidates,
|
| 368 |
reanalysis_data={
|
| 369 |
"strategy_used": strategy_decision,
|
| 370 |
+
"market_conditions": market_context
|
|
|
|
| 371 |
}
|
| 372 |
)
|
| 373 |
|
| 374 |
if not top_candidates:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
return
|
| 376 |
|
|
|
|
|
|
|
| 377 |
for candidate in top_candidates:
|
| 378 |
try:
|
| 379 |
if not await validate_candidate_data_enhanced(candidate):
|
|
|
|
| 380 |
continue
|
| 381 |
|
| 382 |
llm_analysis_data = await llm_service_global.get_trading_decision(candidate)
|
| 383 |
|
| 384 |
if not llm_analysis_data:
|
|
|
|
| 385 |
continue
|
| 386 |
|
| 387 |
if llm_analysis_data.get('action') == "HOLD":
|
|
|
|
| 388 |
continue
|
| 389 |
|
| 390 |
if llm_analysis_data.get('action') in ["BUY", "SELL"]:
|
| 391 |
final_strategy = llm_analysis_data.get('strategy')
|
| 392 |
candidate_strategy = candidate.get('target_strategy', 'GENERIC')
|
| 393 |
|
| 394 |
+
if not final_strategy or final_strategy == 'unknown':
|
| 395 |
final_strategy = candidate_strategy
|
| 396 |
llm_analysis_data['strategy'] = final_strategy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
await r2_service_global.save_system_logs_async({
|
| 399 |
"new_opportunity_found": True,
|
| 400 |
"symbol": candidate['symbol'],
|
| 401 |
"action": llm_analysis_data.get('action'),
|
| 402 |
+
"strategy": final_strategy
|
|
|
|
|
|
|
| 403 |
})
|
| 404 |
|
| 405 |
return {
|
|
|
|
| 410 |
}
|
| 411 |
|
| 412 |
except Exception as error:
|
| 413 |
+
print(f"LLM error for {candidate.get('symbol', 'unknown')}: {error}")
|
|
|
|
| 414 |
|
|
|
|
| 415 |
return None
|
| 416 |
|
| 417 |
except Exception as error:
|
| 418 |
+
print(f"Error while scanning for opportunities: {error}")
|
|
|
|
| 419 |
await r2_service_global.save_system_logs_async({
|
| 420 |
"opportunity_scan_error": True,
|
| 421 |
+
"error": str(error)
|
|
|
|
| 422 |
})
|
| 423 |
return None
|
| 424 |
|
|
|
|
| 430 |
current_time = datetime.now()
|
| 431 |
hold_minutes = (current_time - entry_time).total_seconds() / 60
|
| 432 |
|
|
|
|
|
|
|
| 433 |
original_strategy = trade_data.get('strategy')
|
| 434 |
if not original_strategy or original_strategy == 'unknown':
|
| 435 |
original_strategy = trade_data.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 436 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
try:
|
| 438 |
market_context = await data_manager_global.get_market_context_async()
|
| 439 |
+
except Exception:
|
|
|
|
| 440 |
market_context = {'btc_sentiment': 'NEUTRAL'}
|
| 441 |
|
| 442 |
symbol_with_reasons = [{'symbol': symbol, 'reasons': ['re-analysis']}]
|
|
|
|
| 443 |
ohlcv_data_list = await data_manager_global.get_fast_pass_data_async(symbol_with_reasons)
|
| 444 |
if not ohlcv_data_list:
|
|
|
|
| 445 |
return None
|
| 446 |
|
| 447 |
raw_data = ohlcv_data_list[0]
|
|
|
|
| 449 |
updated_market_context = await data_manager_global.get_market_context_async()
|
| 450 |
if updated_market_context:
|
| 451 |
market_context = updated_market_context
|
| 452 |
+
except Exception:
|
| 453 |
+
pass
|
| 454 |
|
| 455 |
feature_processor = FeatureProcessor(market_context, data_manager_global, learning_engine_global)
|
| 456 |
processed_data = await feature_processor.process_and_score_symbol(raw_data)
|
| 457 |
|
| 458 |
if not processed_data:
|
|
|
|
| 459 |
return None
|
| 460 |
|
| 461 |
await r2_service_global.save_candidates_data_async(
|
| 462 |
candidates_data=None,
|
| 463 |
reanalysis_data={
|
| 464 |
'market_context': market_context,
|
| 465 |
+
'processed_data': processed_data
|
|
|
|
| 466 |
}
|
| 467 |
)
|
| 468 |
|
|
|
|
| 469 |
try:
|
| 470 |
re_analysis_decision = await llm_service_global.re_analyze_trade_async(trade_data, processed_data)
|
| 471 |
+
except Exception:
|
|
|
|
|
|
|
| 472 |
re_analysis_decision = local_re_analyze_trade(trade_data, processed_data)
|
|
|
|
| 473 |
|
| 474 |
final_decision = _apply_patience_logic(re_analysis_decision, hold_minutes, trade_data, processed_data)
|
| 475 |
|
| 476 |
+
if not final_decision.get('strategy'):
|
| 477 |
final_decision['strategy'] = original_strategy
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
await r2_service_global.save_system_logs_async({
|
| 480 |
"trade_reanalyzed": True,
|
| 481 |
"symbol": symbol,
|
| 482 |
"action": final_decision.get('action'),
|
| 483 |
+
"hold_minutes": hold_minutes,
|
| 484 |
+
"strategy": final_decision.get('strategy')
|
|
|
|
|
|
|
| 485 |
})
|
| 486 |
|
| 487 |
return {
|
|
|
|
| 492 |
}
|
| 493 |
|
| 494 |
except Exception as error:
|
| 495 |
+
print(f"Error during trade re-analysis: {error}")
|
|
|
|
| 496 |
await r2_service_global.save_system_logs_async({
|
| 497 |
"reanalysis_error": True,
|
| 498 |
"symbol": symbol,
|
| 499 |
+
"error": str(error)
|
|
|
|
| 500 |
})
|
| 501 |
return None
|
| 502 |
|
| 503 |
async def run_bot_cycle_async():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
try:
|
| 505 |
await r2_service_global.save_system_logs_async({
|
| 506 |
+
"cycle_started": True
|
|
|
|
| 507 |
})
|
| 508 |
|
| 509 |
if not r2_service_global.acquire_lock():
|
|
|
|
| 510 |
return
|
| 511 |
|
| 512 |
open_trades = []
|
| 513 |
try:
|
| 514 |
open_trades = await r2_service_global.get_open_trades_async()
|
|
|
|
| 515 |
|
| 516 |
trades_fixed = 0
|
| 517 |
for trade in open_trades:
|
|
|
|
| 519 |
original_strategy = trade.get('decision_data', {}).get('strategy', 'GENERIC')
|
| 520 |
trade['strategy'] = original_strategy
|
| 521 |
trades_fixed += 1
|
|
|
|
| 522 |
|
| 523 |
if trades_fixed > 0:
|
|
|
|
| 524 |
await r2_service_global.save_open_trades_async(open_trades)
|
| 525 |
|
| 526 |
should_look_for_new_trade = not open_trades
|
|
|
|
| 533 |
]
|
| 534 |
|
| 535 |
if trades_to_reanalyze:
|
|
|
|
| 536 |
for trade in trades_to_reanalyze:
|
| 537 |
result = await re_analyze_open_trade_async(trade)
|
| 538 |
if result and result['decision'].get('action') == "CLOSE_TRADE":
|
| 539 |
await r2_service_global.close_trade_async(trade, result['current_price'])
|
|
|
|
| 540 |
if learning_engine_global and learning_engine_global.initialized:
|
| 541 |
trade_with_strategy = trade.copy()
|
| 542 |
strategy = result['decision'].get('strategy', trade.get('strategy', 'GENERIC'))
|
|
|
|
| 545 |
should_look_for_new_trade = True
|
| 546 |
elif result and result['decision'].get('action') == "UPDATE_TRADE":
|
| 547 |
await r2_service_global.update_trade_async(trade, result['decision'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
|
| 549 |
if should_look_for_new_trade:
|
| 550 |
portfolio_state = await r2_service_global.get_portfolio_state_async()
|
| 551 |
current_capital = portfolio_state.get("current_capital_usd", 0)
|
| 552 |
|
|
|
|
|
|
|
| 553 |
if current_capital <= 0:
|
|
|
|
|
|
|
| 554 |
if len(open_trades) == 0:
|
|
|
|
|
|
|
|
|
|
| 555 |
initial_capital = portfolio_state.get("initial_capital_usd", 10.0)
|
| 556 |
if initial_capital > 0:
|
| 557 |
portfolio_state["current_capital_usd"] = initial_capital
|
| 558 |
portfolio_state["invested_capital_usd"] = 0.0
|
| 559 |
await r2_service_global.save_portfolio_state_async(portfolio_state)
|
|
|
|
| 560 |
current_capital = initial_capital
|
| 561 |
|
| 562 |
if current_capital > 1:
|
|
|
|
| 563 |
new_opportunity = await find_new_opportunities_async()
|
| 564 |
if new_opportunity:
|
|
|
|
|
|
|
| 565 |
if not new_opportunity['decision'].get('strategy'):
|
| 566 |
new_opportunity['decision']['strategy'] = new_opportunity.get('strategy', 'GENERIC')
|
|
|
|
| 567 |
|
| 568 |
await r2_service_global.save_new_trade_async(
|
| 569 |
new_opportunity['symbol'],
|
|
|
|
| 575 |
if trade['symbol'] == new_opportunity['symbol']:
|
| 576 |
asyncio.create_task(realtime_monitor._monitor_single_trade(trade))
|
| 577 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
|
| 579 |
finally:
|
|
|
|
| 580 |
r2_service_global.release_lock()
|
| 581 |
await r2_service_global.save_system_logs_async({
|
| 582 |
"cycle_completed": True,
|
| 583 |
+
"open_trades": len(open_trades)
|
|
|
|
| 584 |
})
|
| 585 |
|
| 586 |
except Exception as error:
|
| 587 |
+
print(f"Unhandled error in main cycle: {error}")
|
|
|
|
| 588 |
await r2_service_global.save_system_logs_async({
|
| 589 |
"cycle_error": True,
|
| 590 |
+
"error": str(error)
|
|
|
|
| 591 |
})
|
| 592 |
if r2_service_global.lock_acquired:
|
| 593 |
r2_service_global.release_lock()
|
| 594 |
|
| 595 |
@asynccontextmanager
|
| 596 |
async def lifespan(application: FastAPI):
|
| 597 |
+
global r2_service_global, data_manager_global, llm_service_global, learning_engine_global, realtime_monitor, sentiment_analyzer_global
|
|
|
|
| 598 |
|
| 599 |
try:
|
| 600 |
r2_service_global = R2Service()
|
|
|
|
| 604 |
data_manager_global = DataManager(contracts_database)
|
| 605 |
await data_manager_global.initialize()
|
| 606 |
|
| 607 |
+
sentiment_analyzer_global = SentimentAnalyzer(data_manager_global)
|
| 608 |
+
|
| 609 |
learning_engine_global = LearningEngine(r2_service_global, data_manager_global)
|
| 610 |
await learning_engine_global.initialize_enhanced()
|
| 611 |
|
| 612 |
await learning_engine_global.force_strategy_learning()
|
| 613 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
realtime_monitor = RealTimeTradeMonitor()
|
| 615 |
|
| 616 |
asyncio.create_task(monitor_market_async())
|
| 617 |
asyncio.create_task(realtime_monitor.start_monitoring())
|
| 618 |
|
| 619 |
await r2_service_global.save_system_logs_async({
|
| 620 |
+
"application_started": True
|
|
|
|
| 621 |
})
|
| 622 |
|
|
|
|
| 623 |
yield
|
| 624 |
|
| 625 |
except Exception as error:
|
| 626 |
+
print(f"Application startup failed: {error}")
|
|
|
|
| 627 |
if r2_service_global:
|
| 628 |
await r2_service_global.save_system_logs_async({
|
| 629 |
"application_startup_failed": True,
|
| 630 |
+
"error": str(error)
|
|
|
|
| 631 |
})
|
| 632 |
raise
|
| 633 |
finally:
|
|
|
|
| 638 |
@application.get("/run-cycle")
|
| 639 |
async def run_cycle_api():
|
| 640 |
asyncio.create_task(run_bot_cycle_async())
|
| 641 |
+
return {"message": "Bot cycle initiated"}
|
| 642 |
|
| 643 |
@application.get("/health")
|
| 644 |
async def health_check():
|
|
|
|
| 661 |
"realtime_monitor": "running" if realtime_monitor and realtime_monitor.is_running else "stopped"
|
| 662 |
},
|
| 663 |
"market_state_ok": state.MARKET_STATE_OK,
|
| 664 |
+
"learning_engine": learning_metrics
|
|
|
|
| 665 |
}
|
| 666 |
|
| 667 |
@application.get("/stats")
|
|
|
|
| 670 |
market_context = await data_manager_global.get_market_context_async() if data_manager_global else {}
|
| 671 |
|
| 672 |
learning_stats = {}
|
|
|
|
| 673 |
if learning_engine_global and learning_engine_global.initialized:
|
| 674 |
learning_stats = await learning_engine_global.calculate_performance_metrics()
|
|
|
|
| 675 |
|
| 676 |
api_stats = {}
|
| 677 |
if data_manager_global:
|
|
|
|
| 682 |
"data_manager": api_stats,
|
| 683 |
"market_state": {
|
| 684 |
"is_healthy": state.MARKET_STATE_OK,
|
|
|
|
| 685 |
"context": market_context
|
| 686 |
},
|
| 687 |
"realtime_monitoring": {
|
| 688 |
"active_trades": len(realtime_monitor.monitoring_tasks) if realtime_monitor else 0,
|
| 689 |
"is_running": realtime_monitor.is_running if realtime_monitor else False
|
| 690 |
},
|
| 691 |
+
"learning_engine": learning_stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 692 |
}
|
| 693 |
return stats
|
| 694 |
except Exception as error:
|
|
|
|
| 705 |
"open_trades_count": len(open_trades),
|
| 706 |
"current_capital": portfolio_state.get("current_capital_usd", 0),
|
| 707 |
"total_trades": portfolio_state.get("total_trades", 0),
|
| 708 |
+
"timestamp": datetime.now().isoformat()
|
|
|
|
| 709 |
}
|
| 710 |
except Exception as error:
|
| 711 |
raise HTTPException(status_code=500, detail=f"Failed to get logs status: {str(error)}")
|
| 712 |
|
| 713 |
async def cleanup_on_shutdown():
|
| 714 |
global r2_service_global, data_manager_global, realtime_monitor, learning_engine_global
|
| 715 |
+
print("Shutdown signal received. Cleaning up...")
|
| 716 |
|
| 717 |
if r2_service_global:
|
| 718 |
try:
|
| 719 |
await r2_service_global.save_system_logs_async({
|
| 720 |
+
"application_shutdown": True
|
|
|
|
| 721 |
})
|
| 722 |
+
except Exception:
|
| 723 |
+
pass
|
| 724 |
|
| 725 |
if learning_engine_global and learning_engine_global.initialized:
|
| 726 |
try:
|
| 727 |
await learning_engine_global.save_weights_to_r2()
|
| 728 |
await learning_engine_global.save_performance_history()
|
| 729 |
+
except Exception:
|
| 730 |
+
pass
|
|
|
|
| 731 |
|
| 732 |
if realtime_monitor:
|
| 733 |
realtime_monitor.stop_monitoring()
|
| 734 |
|
| 735 |
if r2_service_global and r2_service_global.lock_acquired:
|
| 736 |
r2_service_global.release_lock()
|
|
|
|
| 737 |
if data_manager_global:
|
| 738 |
await data_manager_global.close()
|
|
|
|
| 739 |
|
| 740 |
def signal_handler(signum, frame):
|
|
|
|
| 741 |
asyncio.create_task(cleanup_on_shutdown())
|
| 742 |
sys.exit(0)
|
| 743 |
|