Update ml_engine/patterns.py
Browse files- ml_engine/patterns.py +20 -19
ml_engine/patterns.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# ml_engine/patterns.py
|
| 2 |
-
# (V8.
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
|
@@ -87,17 +87,17 @@ class ChartPatternAnalyzer:
|
|
| 87 |
self.scaler = None
|
| 88 |
return False
|
| 89 |
|
| 90 |
-
#
|
| 91 |
-
# (V8.4 - إصلاح KeyError: استخدام .copy() لعزل السلاسل (Series) + فحوصات أقوى للأعمدة)
|
| 92 |
def _extract_features(self, df_window: pd.DataFrame) -> pd.DataFrame:
|
| 93 |
"""
|
| 94 |
-
(الوصفة V8 -
|
| 95 |
حساب الـ 30 مؤشراً (وظيفياً) مع عزل البيانات
|
| 96 |
"""
|
| 97 |
if not ta:
|
| 98 |
raise ImportError("مكتبة pandas-ta غير مثبتة.")
|
| 99 |
|
| 100 |
# (إنشاء DF فارغ بنفس الفهرس (Index) الخاص بآخر صف)
|
|
|
|
| 101 |
df = pd.DataFrame(index=df_window.iloc[-1:].index)
|
| 102 |
|
| 103 |
# (تمرير الأعمدة كـ "نسخ" (.copy()) لعزلها عن df_window)
|
|
@@ -107,12 +107,15 @@ class ChartPatternAnalyzer:
|
|
| 107 |
l = df_window['low'].copy()
|
| 108 |
v = df_window['volume'].copy()
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
try:
|
| 111 |
# --- حساب المؤشرات وظيفياً ---
|
| 112 |
df['RSI_14'] = ta.rsi(c, length=14)
|
| 113 |
|
| 114 |
macd_data = ta.macd(c, fast=12, slow=26, signal=9)
|
| 115 |
-
# (فحص الحماية V8.4)
|
| 116 |
if macd_data is not None and not macd_data.empty and 'MACD_12_26_9' in macd_data.columns:
|
| 117 |
df['MACD_12_26_9'] = macd_data['MACD_12_26_9']
|
| 118 |
df['MACDh_12_26_9'] = macd_data['MACDh_12_26_9']
|
|
@@ -122,7 +125,6 @@ class ChartPatternAnalyzer:
|
|
| 122 |
df['EMA_20'] = ta.ema(c, length=20)
|
| 123 |
|
| 124 |
bb_data = ta.bbands(c, length=5, std=2.0)
|
| 125 |
-
# (فحص الحماية V8.4)
|
| 126 |
if bb_data is not None and not bb_data.empty and 'BBL_5_2.0' in bb_data.columns:
|
| 127 |
df['BBL_5_2.0_2.0'] = bb_data['BBL_5_2.0']
|
| 128 |
df['BBM_5_2.0_2.0'] = bb_data['BBM_5_2.0']
|
|
@@ -131,20 +133,19 @@ class ChartPatternAnalyzer:
|
|
| 131 |
df['BBP_5_2.0_2.0'] = bb_data['BBP_5_2.0']
|
| 132 |
|
| 133 |
stoch_data = ta.stoch(h, l, c, k=14, d=3, smooth_k=3)
|
| 134 |
-
# (فحص الحماية V8.4)
|
| 135 |
if stoch_data is not None and not stoch_data.empty and 'STOCHk_14_3_3' in stoch_data.columns:
|
| 136 |
df['STOCHk_14_3_3'] = stoch_data['STOCHk_14_3_3']
|
| 137 |
df['STOCHd_14_3_3'] = stoch_data['STOCHd_14_3_3']
|
| 138 |
df['STOCHh_14_3_3'] = stoch_data['STOCHh_14_3_3']
|
| 139 |
|
| 140 |
adx_data = ta.adx(h, l, c, length=14, adxr=2)
|
| 141 |
-
# (فحص الحماية V8.4)
|
| 142 |
if adx_data is not None and not adx_data.empty and 'ADX_14' in adx_data.columns:
|
| 143 |
df['ADX_14'] = adx_data['ADX_14']
|
| 144 |
df['ADXR_14_2'] = adx_data['ADXR_14_2']
|
| 145 |
df['DMP_14'] = adx_data['DMP_14']
|
| 146 |
df['DMN_14'] = adx_data['DMN_14']
|
| 147 |
|
|
|
|
| 148 |
vwap_series = ta.vwap(h, l, c, v)
|
| 149 |
if vwap_series is not None: df['VWAP_D'] = vwap_series
|
| 150 |
|
|
@@ -156,7 +157,6 @@ class ChartPatternAnalyzer:
|
|
| 156 |
df['DPO_20'] = ta.dpo(c, length=20)
|
| 157 |
|
| 158 |
kvo_data = ta.kvo(h, l, c, v, fast=34, slow=55, signal=13)
|
| 159 |
-
# (فحص الحماية V8.4)
|
| 160 |
if kvo_data is not None and not kvo_data.empty and 'KVO_34_55_13' in kvo_data.columns:
|
| 161 |
df['KVO_34_55_13'] = kvo_data['KVO_34_55_13']
|
| 162 |
df['KVOs_34_55_13'] = kvo_data['KVOs_34_55_13']
|
|
@@ -166,17 +166,16 @@ class ChartPatternAnalyzer:
|
|
| 166 |
df['WILLR_14'] = ta.willr(h, l, c, length=14)
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
-
|
|
|
|
| 170 |
pass
|
| 171 |
# --- (نهاية حساب المؤشرات) ---
|
| 172 |
|
| 173 |
-
# (نأخذ الصف الأخير فقط)
|
| 174 |
last_features = df.iloc[-1:].copy()
|
| 175 |
|
| 176 |
last_features.ffill(inplace=True)
|
| 177 |
last_features.fillna(0, inplace=True)
|
| 178 |
|
| 179 |
-
# (التأكد من أننا نمرر فقط الخصائص الـ 30 التي يتوقعها النموذج، وبالترتيب)
|
| 180 |
final_features = pd.DataFrame(columns=self.indicator_features)
|
| 181 |
|
| 182 |
for col in self.indicator_features:
|
|
@@ -186,7 +185,6 @@ class ChartPatternAnalyzer:
|
|
| 186 |
final_features[col] = 0
|
| 187 |
|
| 188 |
return final_features
|
| 189 |
-
# 🔴 --- END OF CHANGE (V8.4) --- 🔴
|
| 190 |
|
| 191 |
async def detect_chart_patterns(self, ohlcv_data: dict) -> dict:
|
| 192 |
"""
|
|
@@ -214,10 +212,13 @@ class ChartPatternAnalyzer:
|
|
| 214 |
window_candles = candles[-200:]
|
| 215 |
df_window = pd.DataFrame(window_candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
#
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
# 1. استخراج الخصائص (الوصفة V8.4)
|
| 221 |
features_df = self._extract_features(df_window)
|
| 222 |
|
| 223 |
if features_df is None or features_df.empty:
|
|
@@ -242,8 +243,8 @@ class ChartPatternAnalyzer:
|
|
| 242 |
})
|
| 243 |
|
| 244 |
except Exception as e:
|
| 245 |
-
# (يجب أن تختفي
|
| 246 |
-
print(f"❌ [PatternEngineV8.
|
| 247 |
|
| 248 |
# 4. اختيار أفضل نمط من *جميع* الأطر الزمنية
|
| 249 |
if all_results:
|
|
@@ -261,4 +262,4 @@ class ChartPatternAnalyzer:
|
|
| 261 |
|
| 262 |
return best_match
|
| 263 |
|
| 264 |
-
print("✅ ML Module: Pattern Engine V8.
|
|
|
|
| 1 |
# ml_engine/patterns.py
|
| 2 |
+
# (V8.5 - الحل النهائي: إعادة الفهرس الزمني لـ VWAP + الإبقاء على .copy() لعزل المؤشرات)
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
|
|
|
| 87 |
self.scaler = None
|
| 88 |
return False
|
| 89 |
|
| 90 |
+
# (V8.4 - هذا الكود صحيح ويجب الإبقاء عليه كما هو)
|
|
|
|
| 91 |
def _extract_features(self, df_window: pd.DataFrame) -> pd.DataFrame:
|
| 92 |
"""
|
| 93 |
+
(الوصفة V8.4 - لا تغيير هنا)
|
| 94 |
حساب الـ 30 مؤشراً (وظيفياً) مع عزل البيانات
|
| 95 |
"""
|
| 96 |
if not ta:
|
| 97 |
raise ImportError("مكتبة pandas-ta غير مثبتة.")
|
| 98 |
|
| 99 |
# (إنشاء DF فارغ بنفس الفهرس (Index) الخاص بآخر صف)
|
| 100 |
+
# (مهم: df_window *يجب* أن يكون مفهرساً بالوقت هنا)
|
| 101 |
df = pd.DataFrame(index=df_window.iloc[-1:].index)
|
| 102 |
|
| 103 |
# (تمرير الأعمدة كـ "نسخ" (.copy()) لعزلها عن df_window)
|
|
|
|
| 107 |
l = df_window['low'].copy()
|
| 108 |
v = df_window['volume'].copy()
|
| 109 |
|
| 110 |
+
# (V8.5) تمرير الفهرس الزمني صراحة إلى VWAP
|
| 111 |
+
# (على الرغم من أن .copy() قد تزيله، فإن df_window.index لا يزال متاحاً)
|
| 112 |
+
# (تحديث: يبدو أن ta.vwap يأخذ الفهرس من السلاسل (Series) h,l,c,v)
|
| 113 |
+
|
| 114 |
try:
|
| 115 |
# --- حساب المؤشرات وظيفياً ---
|
| 116 |
df['RSI_14'] = ta.rsi(c, length=14)
|
| 117 |
|
| 118 |
macd_data = ta.macd(c, fast=12, slow=26, signal=9)
|
|
|
|
| 119 |
if macd_data is not None and not macd_data.empty and 'MACD_12_26_9' in macd_data.columns:
|
| 120 |
df['MACD_12_26_9'] = macd_data['MACD_12_26_9']
|
| 121 |
df['MACDh_12_26_9'] = macd_data['MACDh_12_26_9']
|
|
|
|
| 125 |
df['EMA_20'] = ta.ema(c, length=20)
|
| 126 |
|
| 127 |
bb_data = ta.bbands(c, length=5, std=2.0)
|
|
|
|
| 128 |
if bb_data is not None and not bb_data.empty and 'BBL_5_2.0' in bb_data.columns:
|
| 129 |
df['BBL_5_2.0_2.0'] = bb_data['BBL_5_2.0']
|
| 130 |
df['BBM_5_2.0_2.0'] = bb_data['BBM_5_2.0']
|
|
|
|
| 133 |
df['BBP_5_2.0_2.0'] = bb_data['BBP_5_2.0']
|
| 134 |
|
| 135 |
stoch_data = ta.stoch(h, l, c, k=14, d=3, smooth_k=3)
|
|
|
|
| 136 |
if stoch_data is not None and not stoch_data.empty and 'STOCHk_14_3_3' in stoch_data.columns:
|
| 137 |
df['STOCHk_14_3_3'] = stoch_data['STOCHk_14_3_3']
|
| 138 |
df['STOCHd_14_3_3'] = stoch_data['STOCHd_14_3_3']
|
| 139 |
df['STOCHh_14_3_3'] = stoch_data['STOCHh_14_3_3']
|
| 140 |
|
| 141 |
adx_data = ta.adx(h, l, c, length=14, adxr=2)
|
|
|
|
| 142 |
if adx_data is not None and not adx_data.empty and 'ADX_14' in adx_data.columns:
|
| 143 |
df['ADX_14'] = adx_data['ADX_14']
|
| 144 |
df['ADXR_14_2'] = adx_data['ADXR_14_2']
|
| 145 |
df['DMP_14'] = adx_data['DMP_14']
|
| 146 |
df['DMN_14'] = adx_data['DMN_14']
|
| 147 |
|
| 148 |
+
# (هنا يتم استخدام الفهرس الزمني الذي ورثته H,L,C,V)
|
| 149 |
vwap_series = ta.vwap(h, l, c, v)
|
| 150 |
if vwap_series is not None: df['VWAP_D'] = vwap_series
|
| 151 |
|
|
|
|
| 157 |
df['DPO_20'] = ta.dpo(c, length=20)
|
| 158 |
|
| 159 |
kvo_data = ta.kvo(h, l, c, v, fast=34, slow=55, signal=13)
|
|
|
|
| 160 |
if kvo_data is not None and not kvo_data.empty and 'KVO_34_55_13' in kvo_data.columns:
|
| 161 |
df['KVO_34_55_13'] = kvo_data['KVO_34_55_13']
|
| 162 |
df['KVOs_34_55_13'] = kvo_data['KVOs_34_55_13']
|
|
|
|
| 166 |
df['WILLR_14'] = ta.willr(h, l, c, length=14)
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
+
# (يجب أن نرى هذا الخطأ فقط إذا فشل VWAP مرة أخرى)
|
| 170 |
+
print(f"❌ [PatternEngineV8.5] خطأ أثناء حساب المؤشرات وظيفياً: {e}")
|
| 171 |
pass
|
| 172 |
# --- (نهاية حساب المؤشرات) ---
|
| 173 |
|
|
|
|
| 174 |
last_features = df.iloc[-1:].copy()
|
| 175 |
|
| 176 |
last_features.ffill(inplace=True)
|
| 177 |
last_features.fillna(0, inplace=True)
|
| 178 |
|
|
|
|
| 179 |
final_features = pd.DataFrame(columns=self.indicator_features)
|
| 180 |
|
| 181 |
for col in self.indicator_features:
|
|
|
|
| 185 |
final_features[col] = 0
|
| 186 |
|
| 187 |
return final_features
|
|
|
|
| 188 |
|
| 189 |
async def detect_chart_patterns(self, ohlcv_data: dict) -> dict:
|
| 190 |
"""
|
|
|
|
| 212 |
window_candles = candles[-200:]
|
| 213 |
df_window = pd.DataFrame(window_candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
| 214 |
|
| 215 |
+
# 🔴 --- START OF CHANGE (V8.5) --- 🔴
|
| 216 |
+
# (إعادة تفعيل الفهرس الزمني. هذا ضروري لـ VWAP)
|
| 217 |
+
df_window['timestamp'] = pd.to_datetime(df_window['timestamp'], unit='ms')
|
| 218 |
+
df_window.set_index('timestamp', inplace=True)
|
| 219 |
+
# 🔴 --- END OF CHANGE (V8.5) --- 🔴
|
| 220 |
|
| 221 |
+
# 1. استخراج الخصائص (الوصفة V8.4 لا تزال قيد الاستخدام)
|
| 222 |
features_df = self._extract_features(df_window)
|
| 223 |
|
| 224 |
if features_df is None or features_df.empty:
|
|
|
|
| 243 |
})
|
| 244 |
|
| 245 |
except Exception as e:
|
| 246 |
+
# (الآن يجب أن تختفي جميع الأخطاء السابقة)
|
| 247 |
+
print(f"❌ [PatternEngineV8.5] فشل التنبؤ لـ {timeframe}: {e}")
|
| 248 |
|
| 249 |
# 4. اختيار أفضل نمط من *جميع* الأطر الزمنية
|
| 250 |
if all_results:
|
|
|
|
| 262 |
|
| 263 |
return best_match
|
| 264 |
|
| 265 |
+
print("✅ ML Module: Pattern Engine V8.5 (Re-indexed + Isolated Series) loaded")
|