Update data_manager.py
Browse files- data_manager.py +115 -65
data_manager.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# data_manager.py (Updated to V7.
|
| 2 |
import os
|
| 3 |
import asyncio
|
| 4 |
import httpx
|
|
@@ -67,7 +67,7 @@ class DataManager:
|
|
| 67 |
self.pattern_analyzer = ChartPatternAnalyzer(r2_service=None)
|
| 68 |
# --- (نهاية الإضافة) ---
|
| 69 |
|
| 70 |
-
print("✅ DataManager initialized - V7.
|
| 71 |
|
| 72 |
async def _load_markets(self):
|
| 73 |
try:
|
|
@@ -227,81 +227,132 @@ class DataManager:
|
|
| 227 |
print(f"❌ خطأ في إنشاء DataFrame لمرشح 1H: {e}")
|
| 228 |
return pd.DataFrame()
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
def _calculate_1h_filter_score(self, analysis: Dict) -> float:
|
| 231 |
"""
|
| 232 |
-
(محدث V7.
|
| 233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
"""
|
| 235 |
try:
|
| 236 |
-
# (V7.2) واقي العملات المستقرة
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
| 265 |
|
| 266 |
-
#
|
| 267 |
-
indicator_score = 0
|
| 268 |
indicators = analysis.get('advanced_indicators', {}).get('1h', {})
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
ema_21 = indicators.get('ema_21', 0)
|
| 274 |
-
|
| 275 |
-
if rsi > 55 and macd_hist > 0 and ema_9 > ema_21:
|
| 276 |
-
indicator_score = min(0.5 + (rsi - 55) / 50 + (macd_hist / (analysis.get('current_price', 1) * 0.001)), 1.0)
|
| 277 |
-
elif rsi < 35:
|
| 278 |
-
indicator_score = min(0.4 + (35 - rsi) / 35, 0.8)
|
| 279 |
-
|
| 280 |
-
# 4. حساب النتيجة النهائية (بدون استراتيجيات أو حيتان)
|
| 281 |
-
components = []
|
| 282 |
-
weights = []
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
if indicator_score > 0: components.append(indicator_score); weights.append(0.30)
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
return min(max(enhanced_score, 0.0), 1.0)
|
| 294 |
|
| 295 |
except Exception as e:
|
| 296 |
-
print(f"❌ خطأ في حساب درجة فلتر 1H: {e}")
|
| 297 |
return 0.0
|
|
|
|
| 298 |
|
| 299 |
|
| 300 |
async def layer1_rapid_screening(self) -> List[Dict[str, Any]]:
|
| 301 |
"""
|
| 302 |
الطبقة 1: فحص سريع - (محدث بالكامل V7.3)
|
| 303 |
"""
|
| 304 |
-
print("📊 الطبقة 1 (V7.
|
| 305 |
|
| 306 |
# الخطوة 1: جلب أفضل 100 عملة حسب الحجم
|
| 307 |
volume_data = await self._get_volume_data_optimal()
|
|
@@ -315,7 +366,7 @@ class DataManager:
|
|
| 315 |
volume_data.sort(key=lambda x: x['dollar_volume'], reverse=True)
|
| 316 |
top_100_by_volume = volume_data[:100]
|
| 317 |
|
| 318 |
-
print(f"✅ تم تحديد أفضل {len(top_100_by_volume)} عملة. بدء تشغيل الكاشف
|
| 319 |
|
| 320 |
final_candidates = []
|
| 321 |
|
|
@@ -362,21 +413,20 @@ class DataManager:
|
|
| 362 |
analysis_output['ohlcv_1h'] = symbol_data['ohlcv_1h']
|
| 363 |
analysis_output['symbol'] = symbol
|
| 364 |
|
|
|
|
| 365 |
filter_score = self._calculate_1h_filter_score(analysis_output)
|
| 366 |
|
| 367 |
-
#
|
| 368 |
-
# (رفع العتبة من 0.20 إلى 0.50)
|
| 369 |
if filter_score >= 0.50:
|
| 370 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 371 |
print(f" ✅ {symbol}: نجح (الدرجة: {filter_score:.2f})")
|
| 372 |
symbol_data['layer1_score'] = filter_score
|
| 373 |
-
symbol_data['reasons_for_candidacy'] = [f'
|
| 374 |
|
| 375 |
if 'ohlcv_1h' in symbol_data: del symbol_data['ohlcv_1h']
|
| 376 |
|
| 377 |
final_candidates.append(symbol_data)
|
| 378 |
|
| 379 |
-
print(f"🎯 اكتملت الغربلة (V7.
|
| 380 |
|
| 381 |
print("🏆 المرشحون الناجحون:")
|
| 382 |
for k, candidate in enumerate(final_candidates[:15]):
|
|
@@ -656,4 +706,4 @@ class DataManager:
|
|
| 656 |
except Exception as e:
|
| 657 |
return {'action': 'HOLD', 'confidence': 0.3, 'reason': f'Error: {str(e)}', 'source': 'whale_analysis'}
|
| 658 |
|
| 659 |
-
print("✅ DataManager loaded - V7.
|
|
|
|
| 1 |
+
# data_manager.py (Updated to V7.4 - 1H Momentum Burst Filter)
|
| 2 |
import os
|
| 3 |
import asyncio
|
| 4 |
import httpx
|
|
|
|
| 67 |
self.pattern_analyzer = ChartPatternAnalyzer(r2_service=None)
|
| 68 |
# --- (نهاية الإضافة) ---
|
| 69 |
|
| 70 |
+
print("✅ DataManager initialized - V7.4 (1H Momentum Burst Filter)")
|
| 71 |
|
| 72 |
async def _load_markets(self):
|
| 73 |
try:
|
|
|
|
| 227 |
print(f"❌ خطأ في إنشاء DataFrame لمرشح 1H: {e}")
|
| 228 |
return pd.DataFrame()
|
| 229 |
|
| 230 |
+
# 🔴 --- START OF CHANGE (V7.4) --- 🔴
|
| 231 |
+
# (دالة مساعدة جديدة لتقسيم منطق MC)
|
| 232 |
+
def _get_mc_score_for_filter(self, analysis: Dict) -> float:
|
| 233 |
+
"""(V7.4) (دالة مساعدة) لحساب درجة مونت كارلو للفلتر"""
|
| 234 |
+
mc_distribution = analysis.get('monte_carlo_distribution')
|
| 235 |
+
monte_carlo_score = 0
|
| 236 |
+
|
| 237 |
+
if mc_distribution and mc_distribution.get('error') is None:
|
| 238 |
+
prob_gain = mc_distribution.get('probability_of_gain', 0)
|
| 239 |
+
var_95_value = mc_distribution.get('risk_metrics', {}).get('VaR_95_value', 0)
|
| 240 |
+
current_price = analysis.get('current_price', 1)
|
| 241 |
+
|
| 242 |
+
if current_price > 0:
|
| 243 |
+
normalized_var = var_95_value / current_price
|
| 244 |
+
risk_penalty = 1.0
|
| 245 |
+
if normalized_var > 0.05: risk_penalty = 0.5
|
| 246 |
+
elif normalized_var > 0.03: risk_penalty = 0.8
|
| 247 |
+
|
| 248 |
+
normalized_prob_score = max(0.0, (prob_gain - 0.5) * 2)
|
| 249 |
+
monte_carlo_score = normalized_prob_score * risk_penalty
|
| 250 |
+
return monte_carlo_score
|
| 251 |
+
|
| 252 |
def _calculate_1h_filter_score(self, analysis: Dict) -> float:
|
| 253 |
"""
|
| 254 |
+
(محدث V7.4 - فلتر الزخم المتفجر 1H)
|
| 255 |
+
"فلتر شمس منتصف الظهر"
|
| 256 |
+
يبحث عن:
|
| 257 |
+
1. انفجار الحجم (Volume Explosion)
|
| 258 |
+
2. قوة الاتجاه (Trend Strength - ADX)
|
| 259 |
+
3. المنطقة الآمنة (RSI Safe Zone)
|
| 260 |
+
4. (يحتوي على واقي العملات المستقرة V7.2)
|
| 261 |
"""
|
| 262 |
try:
|
| 263 |
+
# (V7.2) واقي العملات المستقرة (لا تغيير)
|
| 264 |
+
ohlcv_candles = analysis.get('ohlcv_1h', {}).get('1h', [])
|
| 265 |
+
if not ohlcv_candles or len(ohlcv_candles) < 30: # (تحتاج 30 لـ ADX و Vol MA)
|
| 266 |
+
return 0.0
|
| 267 |
+
|
| 268 |
+
closes_1h = [c[4] for c in ohlcv_candles]
|
| 269 |
+
if len(closes_1h) > 20: # (التحقق من العملة المستقرة أولاً)
|
| 270 |
+
std_dev = np.std(closes_1h[-20:])
|
| 271 |
+
if std_dev < 1e-5:
|
| 272 |
+
# print(f" - {analysis.get('symbol', 'N/A')}: تم الاستبعاد (عملة مستقرة)")
|
| 273 |
+
return 0.0
|
| 274 |
|
| 275 |
+
# --- (الإضافة الجديدة: حساب المؤشرات المتقدمة للفلتر) ---
|
| 276 |
+
if ta is None: # (التحقق من pandas_ta)
|
| 277 |
+
return 0.0 # لا يمكن الحساب بدون المكتبة
|
| 278 |
+
|
| 279 |
+
df = self._create_dataframe(ohlcv_candles) # (إعادة إنشاء DF لحساب ADX/Vol)
|
| 280 |
+
if df.empty:
|
| 281 |
+
return 0.0
|
| 282 |
+
|
| 283 |
+
# 1. حساب مؤشرات الزخم المتفجر
|
| 284 |
+
volume = df['volume']
|
| 285 |
+
vol_ma = ta.sma(volume, length=20)
|
| 286 |
+
if vol_ma is None or vol_ma.empty: return 0.0
|
| 287 |
+
|
| 288 |
+
current_volume = volume.iloc[-1]
|
| 289 |
+
avg_volume = vol_ma.iloc[-1]
|
| 290 |
+
|
| 291 |
+
adx_data = ta.adx(df['high'], df['low'], df['close'], length=14)
|
| 292 |
+
current_adx = adx_data['ADX_14'].iloc[-1] if adx_data is not None and not adx_data.empty else 0
|
| 293 |
|
| 294 |
+
# 2. جلب المؤشرات الأساسية (المحسوبة مسبقاً)
|
|
|
|
| 295 |
indicators = analysis.get('advanced_indicators', {}).get('1h', {})
|
| 296 |
+
rsi = indicators.get('rsi', 50)
|
| 297 |
+
|
| 298 |
+
# 3. جلب درجة مونت كارلو (المحسوبة مسبقاً)
|
| 299 |
+
monte_carlo_score = self._get_mc_score_for_filter(analysis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
+
# 4. جلب درجة الأنماط (المحسوبة مسبقاً)
|
| 302 |
+
pattern_confidence = analysis.get('pattern_analysis', {}).get('pattern_confidence', 0)
|
|
|
|
| 303 |
|
| 304 |
+
# --- (منطق الفلترة الجديد) ---
|
| 305 |
+
|
| 306 |
+
# المعايير الصارمة لـ "شمس منتصف الظهر"
|
| 307 |
+
VOL_MULTIPLIER = 1.75 # (يجب أن يكون الحجم الحالي 1.75x المتوسط)
|
| 308 |
+
ADX_THRESHOLD = 25.0 # (يجب أن يكون الاتجاه قوياً)
|
| 309 |
+
RSI_MIN = 60 # (يجب أن يكون في منطقة صاعدة)
|
| 310 |
+
RSI_MAX = 85 # (يجب ألا يكون منهكاً تماماً)
|
| 311 |
+
|
| 312 |
+
vol_score = 0.0
|
| 313 |
+
if avg_volume > 0:
|
| 314 |
+
# (تطبيع درجة الحجم: 1.0 إذا كان يساوي أو يفوق المضاعف)
|
| 315 |
+
vol_score = min(1.0, max(0.0, (current_volume / avg_volume) / VOL_MULTIPLIER))
|
| 316 |
+
|
| 317 |
+
# (تطبيع درجة ADX: 0.0 عند 25، و 1.0 عند 40+)
|
| 318 |
+
adx_score = min(1.0, max(0.0, (current_adx - ADX_THRESHOLD) / 15.0))
|
| 319 |
+
|
| 320 |
+
rsi_score = 0.0
|
| 321 |
+
if RSI_MIN <= rsi <= RSI_MAX:
|
| 322 |
+
rsi_score = 1.0
|
| 323 |
+
elif rsi > RSI_MAX: # (عقوبة بسيطة للإرهاق)
|
| 324 |
+
rsi_score = 0.5
|
| 325 |
+
|
| 326 |
+
# (الأوزان الجديدة) - إعطاء الأولوية للزخم والحجم
|
| 327 |
+
WEIGHT_VOL = 0.30
|
| 328 |
+
WEIGHT_ADX = 0.30
|
| 329 |
+
WEIGHT_RSI = 0.15
|
| 330 |
+
WEIGHT_MC = 0.15
|
| 331 |
+
WEIGHT_PATTERN = 0.10 # (تقليل أهمية النمط أثناء الانفجار)
|
| 332 |
+
|
| 333 |
+
final_score = (
|
| 334 |
+
(vol_score * WEIGHT_VOL) +
|
| 335 |
+
(adx_score * WEIGHT_ADX) +
|
| 336 |
+
(rsi_score * WEIGHT_RSI) +
|
| 337 |
+
(monte_carlo_score * WEIGHT_MC) +
|
| 338 |
+
(pattern_confidence * WEIGHT_PATTERN)
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
# (العتبة (Threshold) لا تزال 0.50 كما هي في V7.3)
|
| 342 |
|
| 343 |
+
return min(max(final_score, 0.0), 1.0)
|
|
|
|
| 344 |
|
| 345 |
except Exception as e:
|
| 346 |
+
# print(f"❌ خطأ في حساب درجة فلتر 1H (V-Burst): {e}")
|
| 347 |
return 0.0
|
| 348 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 349 |
|
| 350 |
|
| 351 |
async def layer1_rapid_screening(self) -> List[Dict[str, Any]]:
|
| 352 |
"""
|
| 353 |
الطبقة 1: فحص سريع - (محدث بالكامل V7.3)
|
| 354 |
"""
|
| 355 |
+
print("📊 الطبقة 1 (V7.4): بدء الغربلة (الكاشف المتفجر 1H)...")
|
| 356 |
|
| 357 |
# الخطوة 1: جلب أفضل 100 عملة حسب الحجم
|
| 358 |
volume_data = await self._get_volume_data_optimal()
|
|
|
|
| 366 |
volume_data.sort(key=lambda x: x['dollar_volume'], reverse=True)
|
| 367 |
top_100_by_volume = volume_data[:100]
|
| 368 |
|
| 369 |
+
print(f"✅ تم تحديد أفضل {len(top_100_by_volume)} عملة. بدء تشغيل الكاشف المتفجر (1H)...")
|
| 370 |
|
| 371 |
final_candidates = []
|
| 372 |
|
|
|
|
| 413 |
analysis_output['ohlcv_1h'] = symbol_data['ohlcv_1h']
|
| 414 |
analysis_output['symbol'] = symbol
|
| 415 |
|
| 416 |
+
# (استدعاء الدالة الجديدة V7.4)
|
| 417 |
filter_score = self._calculate_1h_filter_score(analysis_output)
|
| 418 |
|
| 419 |
+
# (لا تغيير في العتبة، V7.3)
|
|
|
|
| 420 |
if filter_score >= 0.50:
|
|
|
|
| 421 |
print(f" ✅ {symbol}: نجح (الدرجة: {filter_score:.2f})")
|
| 422 |
symbol_data['layer1_score'] = filter_score
|
| 423 |
+
symbol_data['reasons_for_candidacy'] = [f'1H_MOMENTUM_BURST']
|
| 424 |
|
| 425 |
if 'ohlcv_1h' in symbol_data: del symbol_data['ohlcv_1h']
|
| 426 |
|
| 427 |
final_candidates.append(symbol_data)
|
| 428 |
|
| 429 |
+
print(f"🎯 اكتملت الغربلة (V7.4). تم تأهيل {len(final_candidates)} عملة من أصل 100 للطبقة 2.")
|
| 430 |
|
| 431 |
print("🏆 المرشحون الناجحون:")
|
| 432 |
for k, candidate in enumerate(final_candidates[:15]):
|
|
|
|
| 706 |
except Exception as e:
|
| 707 |
return {'action': 'HOLD', 'confidence': 0.3, 'reason': f'Error: {str(e)}', 'source': 'whale_analysis'}
|
| 708 |
|
| 709 |
+
print("✅ DataManager loaded - V7.4 (1H Momentum Burst Filter)")
|