Spaces:
Running
Running
Update LLM.py
Browse files
LLM.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# LLM.py
|
| 2 |
-
import os, traceback, asyncio, json
|
| 3 |
from datetime import datetime
|
| 4 |
from functools import wraps
|
| 5 |
from backoff import on_exception, expo
|
|
@@ -16,22 +16,149 @@ class PatternAnalysisEngine:
|
|
| 16 |
self.llm = llm_service
|
| 17 |
|
| 18 |
def _format_chart_data_for_llm(self, ohlcv_data):
|
| 19 |
-
"""تنسيق شامل لبيانات الشموع لتحليل الأنماط"""
|
| 20 |
if not ohlcv_data:
|
| 21 |
return "Insufficient chart data for pattern analysis"
|
| 22 |
|
| 23 |
try:
|
| 24 |
-
# استخدام جميع الأطر الزمنية المتاحة
|
| 25 |
all_timeframes = []
|
| 26 |
for timeframe, candles in ohlcv_data.items():
|
| 27 |
-
if candles and len(candles) >= 20
|
| 28 |
-
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
return "\n\n".join(all_timeframes) if all_timeframes else "No sufficient timeframe data available"
|
| 32 |
except Exception as e:
|
| 33 |
return f"Error formatting chart data: {str(e)}"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
async def analyze_chart_patterns(self, symbol, ohlcv_data):
|
| 36 |
try:
|
| 37 |
if not ohlcv_data:
|
|
@@ -42,19 +169,19 @@ class PatternAnalysisEngine:
|
|
| 42 |
prompt = f"""
|
| 43 |
ANALYZE CHART PATTERNS FOR {symbol}
|
| 44 |
|
| 45 |
-
CANDLE DATA FOR TECHNICAL ANALYSIS:
|
| 46 |
{chart_text}
|
| 47 |
|
| 48 |
PATTERN ANALYSIS INSTRUCTIONS:
|
| 49 |
-
1. Analyze ALL available timeframes
|
| 50 |
-
2. Identify clear chart patterns (Double Top/Bottom, Head & Shoulders, Triangles, Flags, etc.)
|
| 51 |
-
3. Assess trend direction and strength
|
| 52 |
-
4. Identify key support and resistance levels
|
| 53 |
-
5. Evaluate volume patterns
|
| 54 |
-
6. Look for convergence/divergence across timeframes
|
| 55 |
-
7.
|
| 56 |
|
| 57 |
-
CRITICAL: You MUST analyze
|
| 58 |
|
| 59 |
OUTPUT FORMAT (JSON):
|
| 60 |
{{
|
|
@@ -66,12 +193,13 @@ OUTPUT FORMAT (JSON):
|
|
| 66 |
"timeframe_expectation": "15-25 minutes",
|
| 67 |
"key_support_levels": [0.1200, 0.1180, 0.1150],
|
| 68 |
"key_resistance_levels": [0.1300, 0.1320, 0.1350],
|
| 69 |
-
"pattern_analysis": "Detailed explanation covering multiple timeframes",
|
| 70 |
"timeframe_confirmations": {{
|
| 71 |
"1h": "pattern_details",
|
| 72 |
"4h": "pattern_details",
|
| 73 |
"1d": "pattern_details"
|
| 74 |
}},
|
|
|
|
| 75 |
"risk_assessment": "low/medium/high",
|
| 76 |
"recommended_entry": 0.1234,
|
| 77 |
"recommended_targets": [0.1357, 0.1400],
|
|
@@ -123,6 +251,22 @@ class LLMService:
|
|
| 123 |
symbol = data_payload.get('symbol', 'unknown')
|
| 124 |
target_strategy = data_payload.get('target_strategy', 'GENERIC')
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
# جلب جميع البيانات المطلوبة
|
| 127 |
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
|
| 128 |
pattern_analysis = await self._get_pattern_analysis(data_payload)
|
|
@@ -141,6 +285,8 @@ class LLMService:
|
|
| 141 |
'target_strategy': target_strategy,
|
| 142 |
'pattern_analysis': pattern_analysis,
|
| 143 |
'whale_data_available': whale_data.get('data_available', False),
|
|
|
|
|
|
|
| 144 |
'timestamp': datetime.now().isoformat()
|
| 145 |
}
|
| 146 |
await self.r2_service.save_llm_prompts_async(
|
|
@@ -155,6 +301,7 @@ class LLMService:
|
|
| 155 |
decision_dict['model_source'] = self.model_name
|
| 156 |
decision_dict['pattern_analysis'] = pattern_analysis
|
| 157 |
decision_dict['whale_data_integrated'] = whale_data.get('data_available', False)
|
|
|
|
| 158 |
return decision_dict
|
| 159 |
else:
|
| 160 |
print(f"❌ فشل تحليل النموذج الضخم لـ {symbol} - لا توجد قرارات بديلة")
|
|
@@ -193,6 +340,7 @@ class LLMService:
|
|
| 193 |
ohlcv_data = data_payload.get('ohlcv') or data_payload.get('raw_ohlcv')
|
| 194 |
|
| 195 |
if ohlcv_data:
|
|
|
|
| 196 |
return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
|
| 197 |
|
| 198 |
return None
|
|
@@ -237,7 +385,7 @@ COMPREHENSIVE TRADING ANALYSIS FOR {symbol}
|
|
| 237 |
📊 TECHNICAL INDICATORS (ALL TIMEFRAMES):
|
| 238 |
{indicators_summary}
|
| 239 |
|
| 240 |
-
📈 CANDLE DATA & PATTERN ANALYSIS:
|
| 241 |
{candle_data_section}
|
| 242 |
|
| 243 |
🔍 PATTERN ANALYSIS RESULTS:
|
|
@@ -260,19 +408,20 @@ COMPREHENSIVE TRADING ANALYSIS FOR {symbol}
|
|
| 260 |
|
| 261 |
🎯 TRADING DECISION INSTRUCTIONS:
|
| 262 |
|
| 263 |
-
1. ANALYZE ALL PROVIDED DATA: technical indicators, whale activity, patterns, market context
|
| 264 |
-
2.
|
| 265 |
-
3.
|
| 266 |
-
4.
|
| 267 |
-
5.
|
| 268 |
-
6. ASSESS
|
|
|
|
| 269 |
|
| 270 |
-
CRITICAL: You MUST provide specific price levels and time expectations.
|
| 271 |
|
| 272 |
OUTPUT FORMAT (JSON):
|
| 273 |
{{
|
| 274 |
"action": "BUY/SELL/HOLD",
|
| 275 |
-
"reasoning": "Detailed explanation integrating ALL data sources
|
| 276 |
"risk_assessment": "low/medium/high",
|
| 277 |
"trade_type": "LONG/SHORT",
|
| 278 |
"stop_loss": 0.000000,
|
|
@@ -281,7 +430,7 @@ OUTPUT FORMAT (JSON):
|
|
| 281 |
"confidence_level": 0.85,
|
| 282 |
"strategy": "{target_strategy}",
|
| 283 |
"whale_influence": "How whale data influenced the decision",
|
| 284 |
-
"pattern_influence": "How
|
| 285 |
"key_support_level": 0.000000,
|
| 286 |
"key_resistance_level": 0.000000,
|
| 287 |
"risk_reward_ratio": 2.5
|
|
@@ -315,43 +464,50 @@ OUTPUT FORMAT (JSON):
|
|
| 315 |
if resistance_levels:
|
| 316 |
analysis_lines.append(f"🚧 Resistance Levels: {', '.join([f'{level:.6f}' for level in resistance_levels[:3]])}")
|
| 317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
return "\n".join(analysis_lines)
|
| 319 |
|
| 320 |
def _format_candle_data_comprehensive(self, ohlcv_data):
|
| 321 |
-
"""تنسيق شامل لبيانات الشموع"""
|
| 322 |
if not ohlcv_data:
|
| 323 |
-
return "No candle data available for analysis"
|
| 324 |
|
| 325 |
try:
|
| 326 |
timeframes_available = []
|
|
|
|
|
|
|
| 327 |
for timeframe, candles in ohlcv_data.items():
|
| 328 |
-
if candles and len(candles) >=
|
| 329 |
timeframes_available.append(f"{timeframe.upper()} ({len(candles)} candles)")
|
|
|
|
| 330 |
|
| 331 |
if not timeframes_available:
|
| 332 |
return "Insufficient candle data across all timeframes"
|
| 333 |
|
| 334 |
-
summary = f"📊 Available Timeframes: {', '.join(timeframes_available)}\n
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
for timeframe in ['1d', '4h', '1h', '15m']:
|
| 338 |
-
if timeframe in ohlcv_data and ohlcv_data[timeframe]:
|
| 339 |
-
candles = ohlcv_data[timeframe]
|
| 340 |
-
if len(candles) >= 20:
|
| 341 |
-
timeframe_analysis = self._analyze_timeframe_candles(candles, timeframe)
|
| 342 |
-
summary += f"⏰ {timeframe.upper()} ANALYSIS:\n{timeframe_analysis}\n\n"
|
| 343 |
|
| 344 |
return summary
|
| 345 |
except Exception as e:
|
| 346 |
-
return f"Error formatting candle data: {str(e)}"
|
| 347 |
|
| 348 |
def _analyze_timeframe_candles(self, candles, timeframe):
|
| 349 |
"""تحليل الشموع لإطار زمني محدد"""
|
| 350 |
try:
|
| 351 |
-
if len(candles) <
|
| 352 |
-
return "Insufficient data"
|
| 353 |
|
| 354 |
-
recent_candles = candles[-
|
| 355 |
|
| 356 |
# حساب المتغيرات الأساسية
|
| 357 |
closes = [c[4] for c in recent_candles]
|
|
@@ -431,6 +587,12 @@ OUTPUT FORMAT (JSON):
|
|
| 431 |
symbol = trade_data['symbol']
|
| 432 |
original_strategy = trade_data.get('strategy', 'GENERIC')
|
| 433 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
# جلب جميع البيانات المحدثة
|
| 435 |
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
|
| 436 |
pattern_analysis = await self._get_pattern_analysis(processed_data)
|
|
@@ -529,23 +691,23 @@ TRADE RE-ANALYSIS FOR {symbol}
|
|
| 529 |
|
| 530 |
🎯 RE-ANALYSIS INSTRUCTIONS:
|
| 531 |
|
| 532 |
-
1. Evaluate if the original thesis still holds
|
| 533 |
-
2. Consider new whale activity and
|
| 534 |
-
3. Assess current risk-reward ratio
|
| 535 |
-
4. Decide whether to hold, close, or adjust the trade
|
| 536 |
5. Provide specific updated levels if adjusting
|
| 537 |
|
| 538 |
OUTPUT FORMAT (JSON):
|
| 539 |
{{
|
| 540 |
"action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
|
| 541 |
-
"reasoning": "Comprehensive justification based on updated analysis",
|
| 542 |
"new_stop_loss": 0.000000,
|
| 543 |
"new_take_profit": 0.000000,
|
| 544 |
"new_expected_minutes": 15,
|
| 545 |
"confidence_level": 0.85,
|
| 546 |
"strategy": "{strategy}",
|
| 547 |
"whale_influence_reanalysis": "How updated whale data influenced decision",
|
| 548 |
-
"pattern_influence_reanalysis": "How updated patterns influenced decision",
|
| 549 |
"risk_adjustment": "low/medium/high"
|
| 550 |
}}
|
| 551 |
"""
|
|
@@ -569,4 +731,4 @@ OUTPUT FORMAT (JSON):
|
|
| 569 |
print(f"❌ Unexpected LLM API error: {e}")
|
| 570 |
raise
|
| 571 |
|
| 572 |
-
print("✅ LLM Service loaded - Comprehensive Analysis with
|
|
|
|
| 1 |
# LLM.py
|
| 2 |
+
import os, traceback, asyncio, json, time
|
| 3 |
from datetime import datetime
|
| 4 |
from functools import wraps
|
| 5 |
from backoff import on_exception, expo
|
|
|
|
| 16 |
self.llm = llm_service
|
| 17 |
|
| 18 |
def _format_chart_data_for_llm(self, ohlcv_data):
|
| 19 |
+
"""تنسيق شامل لبيانات الشموع الخام لتحليل الأنماط"""
|
| 20 |
if not ohlcv_data:
|
| 21 |
return "Insufficient chart data for pattern analysis"
|
| 22 |
|
| 23 |
try:
|
| 24 |
+
# استخدام جميع الأطر الزمنية المتاحة مع البيانات الخام
|
| 25 |
all_timeframes = []
|
| 26 |
for timeframe, candles in ohlcv_data.items():
|
| 27 |
+
if candles and len(candles) >= 10: # تخفيف الشرط من 20 إلى 10 شموع
|
| 28 |
+
# تمرير البيانات الخام مباشرة للنموذج
|
| 29 |
+
raw_candle_summary = self._format_raw_candle_data(candles, timeframe)
|
| 30 |
+
all_timeframes.append(f"=== {timeframe.upper()} TIMEFRAME ({len(candles)} CANDLES) ===\n{raw_candle_summary}")
|
| 31 |
|
| 32 |
return "\n\n".join(all_timeframes) if all_timeframes else "No sufficient timeframe data available"
|
| 33 |
except Exception as e:
|
| 34 |
return f"Error formatting chart data: {str(e)}"
|
| 35 |
|
| 36 |
+
def _format_raw_candle_data(self, candles, timeframe):
|
| 37 |
+
"""تنسيق بيانات الشموع الخام بشكل مفصل للنموذج"""
|
| 38 |
+
try:
|
| 39 |
+
if len(candles) < 10:
|
| 40 |
+
return f"Only {len(candles)} candles available - insufficient for deep pattern analysis"
|
| 41 |
+
|
| 42 |
+
# أخذ آخر 50 شمعة كحد أقصى لتجنب السياق الطويل جداً
|
| 43 |
+
analysis_candles = candles[-50:] if len(candles) > 50 else candles
|
| 44 |
+
|
| 45 |
+
summary = []
|
| 46 |
+
summary.append(f"Total candles: {len(candles)} (showing last {len(analysis_candles)})")
|
| 47 |
+
summary.append("Recent candles (newest to oldest):")
|
| 48 |
+
|
| 49 |
+
# عرض آخر 15 شمعة بالتفصيل
|
| 50 |
+
for i in range(min(15, len(analysis_candles))):
|
| 51 |
+
idx = len(analysis_candles) - 1 - i
|
| 52 |
+
candle = analysis_candles[idx]
|
| 53 |
+
|
| 54 |
+
# تحويل الطابع الزمني
|
| 55 |
+
try:
|
| 56 |
+
timestamp = datetime.fromtimestamp(candle[0] / 1000).strftime('%Y-%m-%d %H:%M:%S')
|
| 57 |
+
except:
|
| 58 |
+
timestamp = "unknown"
|
| 59 |
+
|
| 60 |
+
open_price, high, low, close, volume = candle[1], candle[2], candle[3], candle[4], candle[5]
|
| 61 |
+
|
| 62 |
+
candle_type = "🟢 BULLISH" if close > open_price else "🔴 BEARISH" if close < open_price else "⚪ NEUTRAL"
|
| 63 |
+
body_size = abs(close - open_price)
|
| 64 |
+
body_percent = (body_size / open_price * 100) if open_price > 0 else 0
|
| 65 |
+
|
| 66 |
+
wick_upper = high - max(open_price, close)
|
| 67 |
+
wick_lower = min(open_price, close) - low
|
| 68 |
+
total_range = high - low
|
| 69 |
+
|
| 70 |
+
if total_range > 0:
|
| 71 |
+
body_ratio = (body_size / total_range) * 100
|
| 72 |
+
upper_wick_ratio = (wick_upper / total_range) * 100
|
| 73 |
+
lower_wick_ratio = (wick_lower / total_range) * 100
|
| 74 |
+
else:
|
| 75 |
+
body_ratio = upper_wick_ratio = lower_wick_ratio = 0
|
| 76 |
+
|
| 77 |
+
summary.append(f"{i+1:2d}. {timestamp} | {candle_type}")
|
| 78 |
+
summary.append(f" O:{open_price:.8f} H:{high:.8f} L:{low:.8f} C:{close:.8f}")
|
| 79 |
+
summary.append(f" Body: {body_percent:.2f}% | Body/Range: {body_ratio:.1f}%")
|
| 80 |
+
summary.append(f" Wicks: Upper {upper_wick_ratio:.1f}% / Lower {lower_wick_ratio:.1f}%")
|
| 81 |
+
summary.append(f" Volume: {volume:,.0f}")
|
| 82 |
+
|
| 83 |
+
# إضافة تحليل إحصائي
|
| 84 |
+
if len(analysis_candles) >= 20:
|
| 85 |
+
stats = self._calculate_candle_statistics(analysis_candles)
|
| 86 |
+
summary.append(f"\n📊 STATISTICAL ANALYSIS:")
|
| 87 |
+
summary.append(f"• Price Change: {stats['price_change']:+.2f}%")
|
| 88 |
+
summary.append(f"• Average Body Size: {stats['avg_body']:.4f}%")
|
| 89 |
+
summary.append(f"• Volatility (ATR): {stats['atr']:.6f}")
|
| 90 |
+
summary.append(f"• Trend: {stats['trend']}")
|
| 91 |
+
summary.append(f"• Support: {stats['support']:.6f}")
|
| 92 |
+
summary.append(f"• Resistance: {stats['resistance']:.6f}")
|
| 93 |
+
|
| 94 |
+
return "\n".join(summary)
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
return f"Error formatting raw candle data: {str(e)}"
|
| 98 |
+
|
| 99 |
+
def _calculate_candle_statistics(self, candles):
|
| 100 |
+
"""حساب الإحصائيات الأساسية للشموع"""
|
| 101 |
+
try:
|
| 102 |
+
closes = [c[4] for c in candles]
|
| 103 |
+
opens = [c[1] for c in candles]
|
| 104 |
+
highs = [c[2] for c in candles]
|
| 105 |
+
lows = [c[3] for c in candles]
|
| 106 |
+
|
| 107 |
+
# حساب التغير في السعر
|
| 108 |
+
first_close = closes[0]
|
| 109 |
+
last_close = closes[-1]
|
| 110 |
+
price_change = ((last_close - first_close) / first_close) * 100
|
| 111 |
+
|
| 112 |
+
# حساب متوسط حجم الجسم
|
| 113 |
+
body_sizes = [abs(close - open) for open, close in zip(opens, closes)]
|
| 114 |
+
avg_body = (sum(body_sizes) / len(body_sizes)) / first_close * 100
|
| 115 |
+
|
| 116 |
+
# حساب ATR مبسط
|
| 117 |
+
true_ranges = []
|
| 118 |
+
for i in range(1, len(candles)):
|
| 119 |
+
high, low, prev_close = highs[i], lows[i], closes[i-1]
|
| 120 |
+
tr1 = high - low
|
| 121 |
+
tr2 = abs(high - prev_close)
|
| 122 |
+
tr3 = abs(low - prev_close)
|
| 123 |
+
true_ranges.append(max(tr1, tr2, tr3))
|
| 124 |
+
|
| 125 |
+
atr = sum(true_ranges) / len(true_ranges) if true_ranges else 0
|
| 126 |
+
|
| 127 |
+
# تحديد الاتجاه
|
| 128 |
+
if price_change > 3:
|
| 129 |
+
trend = "STRONG UPTREND"
|
| 130 |
+
elif price_change > 1:
|
| 131 |
+
trend = "UPTREND"
|
| 132 |
+
elif price_change < -3:
|
| 133 |
+
trend = "STRONG DOWNTREND"
|
| 134 |
+
elif price_change < -1:
|
| 135 |
+
trend = "DOWNTREND"
|
| 136 |
+
else:
|
| 137 |
+
trend = "SIDEWAYS"
|
| 138 |
+
|
| 139 |
+
# مستويات الدعم والمقاومة المبسطة
|
| 140 |
+
support = min(lows)
|
| 141 |
+
resistance = max(highs)
|
| 142 |
+
|
| 143 |
+
return {
|
| 144 |
+
'price_change': price_change,
|
| 145 |
+
'avg_body': avg_body,
|
| 146 |
+
'atr': atr,
|
| 147 |
+
'trend': trend,
|
| 148 |
+
'support': support,
|
| 149 |
+
'resistance': resistance
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
return {
|
| 154 |
+
'price_change': 0,
|
| 155 |
+
'avg_body': 0,
|
| 156 |
+
'atr': 0,
|
| 157 |
+
'trend': 'UNKNOWN',
|
| 158 |
+
'support': 0,
|
| 159 |
+
'resistance': 0
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
async def analyze_chart_patterns(self, symbol, ohlcv_data):
|
| 163 |
try:
|
| 164 |
if not ohlcv_data:
|
|
|
|
| 169 |
prompt = f"""
|
| 170 |
ANALYZE CHART PATTERNS FOR {symbol}
|
| 171 |
|
| 172 |
+
RAW CANDLE DATA FOR TECHNICAL ANALYSIS:
|
| 173 |
{chart_text}
|
| 174 |
|
| 175 |
PATTERN ANALYSIS INSTRUCTIONS:
|
| 176 |
+
1. Analyze ALL available timeframes with the raw candle data provided
|
| 177 |
+
2. Identify clear chart patterns (Double Top/Bottom, Head & Shoulders, Triangles, Flags, Wedges, etc.)
|
| 178 |
+
3. Assess trend direction and strength across multiple timeframes
|
| 179 |
+
4. Identify key support and resistance levels from price action
|
| 180 |
+
5. Evaluate volume patterns and candle formations
|
| 181 |
+
6. Look for convergence/divergence across different timeframes
|
| 182 |
+
7. Analyze candlestick patterns (Doji, Hammer, Engulfing, Morning/Evening Star, etc.)
|
| 183 |
|
| 184 |
+
CRITICAL: You MUST analyze the actual raw candle data provided across multiple timeframes.
|
| 185 |
|
| 186 |
OUTPUT FORMAT (JSON):
|
| 187 |
{{
|
|
|
|
| 193 |
"timeframe_expectation": "15-25 minutes",
|
| 194 |
"key_support_levels": [0.1200, 0.1180, 0.1150],
|
| 195 |
"key_resistance_levels": [0.1300, 0.1320, 0.1350],
|
| 196 |
+
"pattern_analysis": "Detailed explanation covering multiple timeframes and specific candle patterns",
|
| 197 |
"timeframe_confirmations": {{
|
| 198 |
"1h": "pattern_details",
|
| 199 |
"4h": "pattern_details",
|
| 200 |
"1d": "pattern_details"
|
| 201 |
}},
|
| 202 |
+
"candlestick_patterns": ["Hammer", "Bullish Engulfing", ...],
|
| 203 |
"risk_assessment": "low/medium/high",
|
| 204 |
"recommended_entry": 0.1234,
|
| 205 |
"recommended_targets": [0.1357, 0.1400],
|
|
|
|
| 251 |
symbol = data_payload.get('symbol', 'unknown')
|
| 252 |
target_strategy = data_payload.get('target_strategy', 'GENERIC')
|
| 253 |
|
| 254 |
+
# ✅ التحقق من بيانات الشموع بشكل صحيح
|
| 255 |
+
ohlcv_data = data_payload.get('ohlcv') or data_payload.get('raw_ohlcv')
|
| 256 |
+
if not ohlcv_data:
|
| 257 |
+
print(f"⚠️ لا توجد بيانات شموع لـ {symbol} - تخطي التحليل")
|
| 258 |
+
return None
|
| 259 |
+
|
| 260 |
+
# ✅ حساب إجمالي الشموع المتاحة
|
| 261 |
+
total_candles = sum(len(data) for data in ohlcv_data.values() if data)
|
| 262 |
+
timeframes_count = len([tf for tf, data in ohlcv_data.items() if data and len(data) >= 10])
|
| 263 |
+
|
| 264 |
+
print(f" 📊 بيانات {symbol}: {total_candles} شمعة في {timeframes_count} إطار زمني")
|
| 265 |
+
|
| 266 |
+
if total_candles < 30: # تخفيف الشرط من 50 إلى 30 شمعة
|
| 267 |
+
print(f" ⚠️ بيانات شموع غير كافية لـ {symbol}: {total_candles} شمعة فقط")
|
| 268 |
+
return None
|
| 269 |
+
|
| 270 |
# جلب جميع البيانات المطلوبة
|
| 271 |
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
|
| 272 |
pattern_analysis = await self._get_pattern_analysis(data_payload)
|
|
|
|
| 285 |
'target_strategy': target_strategy,
|
| 286 |
'pattern_analysis': pattern_analysis,
|
| 287 |
'whale_data_available': whale_data.get('data_available', False),
|
| 288 |
+
'total_candles': total_candles,
|
| 289 |
+
'timeframes_count': timeframes_count,
|
| 290 |
'timestamp': datetime.now().isoformat()
|
| 291 |
}
|
| 292 |
await self.r2_service.save_llm_prompts_async(
|
|
|
|
| 301 |
decision_dict['model_source'] = self.model_name
|
| 302 |
decision_dict['pattern_analysis'] = pattern_analysis
|
| 303 |
decision_dict['whale_data_integrated'] = whale_data.get('data_available', False)
|
| 304 |
+
decision_dict['total_candles_analyzed'] = total_candles
|
| 305 |
return decision_dict
|
| 306 |
else:
|
| 307 |
print(f"❌ فشل تحليل النموذج الضخم لـ {symbol} - لا توجد قرارات بديلة")
|
|
|
|
| 340 |
ohlcv_data = data_payload.get('ohlcv') or data_payload.get('raw_ohlcv')
|
| 341 |
|
| 342 |
if ohlcv_data:
|
| 343 |
+
# ✅ تمرير البيانات الخام مباشرة لمحرك تحليل الأنماط
|
| 344 |
return await self.pattern_engine.analyze_chart_patterns(symbol, ohlcv_data)
|
| 345 |
|
| 346 |
return None
|
|
|
|
| 385 |
📊 TECHNICAL INDICATORS (ALL TIMEFRAMES):
|
| 386 |
{indicators_summary}
|
| 387 |
|
| 388 |
+
📈 RAW CANDLE DATA & PATTERN ANALYSIS:
|
| 389 |
{candle_data_section}
|
| 390 |
|
| 391 |
🔍 PATTERN ANALYSIS RESULTS:
|
|
|
|
| 408 |
|
| 409 |
🎯 TRADING DECISION INSTRUCTIONS:
|
| 410 |
|
| 411 |
+
1. ANALYZE ALL PROVIDED DATA: technical indicators, whale activity, raw candle patterns, market context
|
| 412 |
+
2. FOCUS ON RAW CANDLE DATA for pattern recognition and price action analysis
|
| 413 |
+
3. CONSIDER STRATEGY ALIGNMENT: {target_strategy}
|
| 414 |
+
4. EVALUATE RISK-REWARD RATIO based on support/resistance levels from candle data
|
| 415 |
+
5. INTEGRATE WHALE ACTIVITY signals into your decision
|
| 416 |
+
6. ASSESS PATTERN STRENGTH and timeframe confirmations from raw candles
|
| 417 |
+
7. CONSIDER MARKET SENTIMENT impact
|
| 418 |
|
| 419 |
+
CRITICAL: You MUST provide specific price levels and time expectations based on the raw candle analysis.
|
| 420 |
|
| 421 |
OUTPUT FORMAT (JSON):
|
| 422 |
{{
|
| 423 |
"action": "BUY/SELL/HOLD",
|
| 424 |
+
"reasoning": "Detailed explanation integrating ALL data sources with emphasis on raw candle patterns and price action",
|
| 425 |
"risk_assessment": "low/medium/high",
|
| 426 |
"trade_type": "LONG/SHORT",
|
| 427 |
"stop_loss": 0.000000,
|
|
|
|
| 430 |
"confidence_level": 0.85,
|
| 431 |
"strategy": "{target_strategy}",
|
| 432 |
"whale_influence": "How whale data influenced the decision",
|
| 433 |
+
"pattern_influence": "How raw candle patterns influenced the decision",
|
| 434 |
"key_support_level": 0.000000,
|
| 435 |
"key_resistance_level": 0.000000,
|
| 436 |
"risk_reward_ratio": 2.5
|
|
|
|
| 464 |
if resistance_levels:
|
| 465 |
analysis_lines.append(f"🚧 Resistance Levels: {', '.join([f'{level:.6f}' for level in resistance_levels[:3]])}")
|
| 466 |
|
| 467 |
+
# إضافة أنماط الشموع إذا كانت متوفرة
|
| 468 |
+
candlestick_patterns = pattern_analysis.get('candlestick_patterns', [])
|
| 469 |
+
if candlestick_patterns:
|
| 470 |
+
analysis_lines.append(f"🕯️ Candlestick Patterns: {', '.join(candlestick_patterns)}")
|
| 471 |
+
|
| 472 |
return "\n".join(analysis_lines)
|
| 473 |
|
| 474 |
def _format_candle_data_comprehensive(self, ohlcv_data):
|
| 475 |
+
"""تنسيق شامل لبيانات الشموع الخام"""
|
| 476 |
if not ohlcv_data:
|
| 477 |
+
return "No raw candle data available for analysis"
|
| 478 |
|
| 479 |
try:
|
| 480 |
timeframes_available = []
|
| 481 |
+
total_candles = 0
|
| 482 |
+
|
| 483 |
for timeframe, candles in ohlcv_data.items():
|
| 484 |
+
if candles and len(candles) >= 5: # تخفيف الشرط
|
| 485 |
timeframes_available.append(f"{timeframe.upper()} ({len(candles)} candles)")
|
| 486 |
+
total_candles += len(candles)
|
| 487 |
|
| 488 |
if not timeframes_available:
|
| 489 |
return "Insufficient candle data across all timeframes"
|
| 490 |
|
| 491 |
+
summary = f"📊 Available Timeframes: {', '.join(timeframes_available)}\n"
|
| 492 |
+
summary += f"📈 Total Candles Available: {total_candles}\n\n"
|
| 493 |
+
|
| 494 |
+
# استخدام محرك الأنماط لتنسيق البيانات الخام
|
| 495 |
+
pattern_engine = PatternAnalysisEngine(self)
|
| 496 |
+
raw_candle_analysis = pattern_engine._format_chart_data_for_llm(ohlcv_data)
|
| 497 |
|
| 498 |
+
summary += raw_candle_analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
return summary
|
| 501 |
except Exception as e:
|
| 502 |
+
return f"Error formatting raw candle data: {str(e)}"
|
| 503 |
|
| 504 |
def _analyze_timeframe_candles(self, candles, timeframe):
|
| 505 |
"""تحليل الشموع لإطار زمني محدد"""
|
| 506 |
try:
|
| 507 |
+
if len(candles) < 10: # تخفيف الشرط
|
| 508 |
+
return f"Insufficient data ({len(candles)} candles)"
|
| 509 |
|
| 510 |
+
recent_candles = candles[-15:] # آخر 15 شمعة فقط
|
| 511 |
|
| 512 |
# حساب المتغيرات الأساسية
|
| 513 |
closes = [c[4] for c in recent_candles]
|
|
|
|
| 587 |
symbol = trade_data['symbol']
|
| 588 |
original_strategy = trade_data.get('strategy', 'GENERIC')
|
| 589 |
|
| 590 |
+
# ✅ التحقق من بيانات الشموع المحدثة
|
| 591 |
+
ohlcv_data = processed_data.get('ohlcv') or processed_data.get('raw_ohlcv')
|
| 592 |
+
if not ohlcv_data:
|
| 593 |
+
print(f"⚠️ لا توجد بيانات شموع محدثة لـ {symbol} - تخطي إعادة التحليل")
|
| 594 |
+
return None
|
| 595 |
+
|
| 596 |
# جلب جميع البيانات المحدثة
|
| 597 |
news_text = await self.news_fetcher.get_news_for_symbol(symbol)
|
| 598 |
pattern_analysis = await self._get_pattern_analysis(processed_data)
|
|
|
|
| 691 |
|
| 692 |
🎯 RE-ANALYSIS INSTRUCTIONS:
|
| 693 |
|
| 694 |
+
1. Evaluate if the original thesis still holds based on updated raw candle data
|
| 695 |
+
2. Consider new whale activity and pattern developments
|
| 696 |
+
3. Assess current risk-reward ratio using latest price action
|
| 697 |
+
4. Decide whether to hold, close, or adjust the trade based on comprehensive analysis
|
| 698 |
5. Provide specific updated levels if adjusting
|
| 699 |
|
| 700 |
OUTPUT FORMAT (JSON):
|
| 701 |
{{
|
| 702 |
"action": "HOLD/CLOSE_TRADE/UPDATE_TRADE",
|
| 703 |
+
"reasoning": "Comprehensive justification based on updated analysis with emphasis on recent candle patterns",
|
| 704 |
"new_stop_loss": 0.000000,
|
| 705 |
"new_take_profit": 0.000000,
|
| 706 |
"new_expected_minutes": 15,
|
| 707 |
"confidence_level": 0.85,
|
| 708 |
"strategy": "{strategy}",
|
| 709 |
"whale_influence_reanalysis": "How updated whale data influenced decision",
|
| 710 |
+
"pattern_influence_reanalysis": "How updated raw candle patterns influenced decision",
|
| 711 |
"risk_adjustment": "low/medium/high"
|
| 712 |
}}
|
| 713 |
"""
|
|
|
|
| 731 |
print(f"❌ Unexpected LLM API error: {e}")
|
| 732 |
raise
|
| 733 |
|
| 734 |
+
print("✅ LLM Service loaded - Comprehensive Analysis with Raw Candle Data & Enhanced Pattern Integration")
|