Spaces:
Running
Running
Update ML.py
Browse files
ML.py
CHANGED
|
@@ -2,9 +2,8 @@
|
|
| 2 |
import pandas as pd
|
| 3 |
import pandas_ta as ta
|
| 4 |
import numpy as np
|
| 5 |
-
from datetime import datetime
|
| 6 |
import asyncio
|
| 7 |
-
from typing import List, Dict, Any
|
| 8 |
|
| 9 |
class AdvancedTechnicalAnalyzer:
|
| 10 |
def __init__(self):
|
|
@@ -17,138 +16,304 @@ class AdvancedTechnicalAnalyzer:
|
|
| 17 |
}
|
| 18 |
|
| 19 |
def calculate_all_indicators(self, dataframe, timeframe):
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
indicators = {}
|
| 22 |
indicators.update(self._calculate_trend_indicators(dataframe))
|
| 23 |
indicators.update(self._calculate_momentum_indicators(dataframe))
|
| 24 |
indicators.update(self._calculate_volatility_indicators(dataframe))
|
| 25 |
indicators.update(self._calculate_volume_indicators(dataframe))
|
| 26 |
indicators.update(self._calculate_cycle_indicators(dataframe))
|
|
|
|
| 27 |
return indicators
|
| 28 |
|
| 29 |
def _calculate_trend_indicators(self, dataframe):
|
|
|
|
| 30 |
trend = {}
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
if len(dataframe) >=
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
if len(dataframe) >= 26:
|
| 36 |
ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close'])
|
| 37 |
if ichimoku is not None:
|
| 38 |
-
if not ichimoku[0]['ITS_9'].empty:
|
| 39 |
-
|
| 40 |
-
if not ichimoku[0]['
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
if len(dataframe) >= 14:
|
| 43 |
adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
|
| 44 |
if adx_result is not None:
|
| 45 |
-
if not adx_result['ADX_14'].empty:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
psar = ta.psar(dataframe['high'], dataframe['low'], dataframe['close'])
|
| 50 |
-
if psar is not None and not psar['PSARl_0.02_0.2'].empty: trend['psar'] = float(psar['PSARl_0.02_0.2'].iloc[-1])
|
| 51 |
-
return {key: value for key, value in trend.items() if value is not None}
|
| 52 |
|
| 53 |
def _calculate_momentum_indicators(self, dataframe):
|
|
|
|
| 54 |
momentum = {}
|
|
|
|
|
|
|
| 55 |
if len(dataframe) >= 14:
|
| 56 |
rsi = ta.rsi(dataframe['close'], length=14)
|
| 57 |
-
if not rsi.empty:
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
if not stoch_rsi['STOCHRSIk_14_14_3_3'].empty: momentum['stoch_rsi_k'] = float(stoch_rsi['STOCHRSIk_14_14_3_3'].iloc[-1])
|
| 62 |
-
if not stoch_rsi['STOCHRSId_14_14_3_3'].empty: momentum['stoch_rsi_d'] = float(stoch_rsi['STOCHRSId_14_14_3_3'].iloc[-1])
|
| 63 |
if len(dataframe) >= 26:
|
| 64 |
macd = ta.macd(dataframe['close'])
|
| 65 |
if macd is not None:
|
| 66 |
-
if not macd['
|
| 67 |
-
|
| 68 |
-
if not macd['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
if len(dataframe) >= 14:
|
| 70 |
williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
|
| 71 |
-
if not williams.empty:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
if len(dataframe) >= 34:
|
| 76 |
-
awesome_oscillator = ta.ao(dataframe['high'], dataframe['low'])
|
| 77 |
-
if not awesome_oscillator.empty: momentum['awesome_oscillator'] = float(awesome_oscillator.iloc[-1])
|
| 78 |
-
if len(dataframe) >= 10:
|
| 79 |
-
momentum_indicator = ta.mom(dataframe['close'], length=10)
|
| 80 |
-
if not momentum_indicator.empty: momentum['momentum'] = float(momentum_indicator.iloc[-1])
|
| 81 |
-
return {key: value for key, value in momentum.items() if value is not None}
|
| 82 |
|
| 83 |
def _calculate_volatility_indicators(self, dataframe):
|
|
|
|
| 84 |
volatility = {}
|
|
|
|
|
|
|
| 85 |
if len(dataframe) >= 20:
|
| 86 |
bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
|
| 87 |
if bollinger_bands is not None:
|
| 88 |
-
if not bollinger_bands['
|
| 89 |
-
|
| 90 |
-
if not bollinger_bands['
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
if len(dataframe) >= 14:
|
| 93 |
average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
|
| 94 |
if not average_true_range.empty:
|
| 95 |
volatility['atr'] = float(average_true_range.iloc[-1])
|
| 96 |
-
if volatility['atr']
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
if not keltner_channel['KCUe_20_2'].empty: volatility['kc_upper'] = float(keltner_channel['KCUe_20_2'].iloc[-1])
|
| 101 |
-
if not keltner_channel['KCLe_20_2'].empty: volatility['kc_lower'] = float(keltner_channel['KCLe_20_2'].iloc[-1])
|
| 102 |
-
if len(dataframe) >= 20:
|
| 103 |
-
donchian_channel = ta.donchian(dataframe['high'], dataframe['low'], length=20)
|
| 104 |
-
if donchian_channel is not None:
|
| 105 |
-
if not donchian_channel['DCU_20_20'].empty: volatility['dc_upper'] = float(donchian_channel['DCU_20_20'].iloc[-1])
|
| 106 |
-
if not donchian_channel['DCL_20_20'].empty: volatility['dc_lower'] = float(donchian_channel['DCL_20_20'].iloc[-1])
|
| 107 |
-
if len(dataframe) >= 14:
|
| 108 |
-
relative_volatility_index = ta.rvi(dataframe['close'], length=14)
|
| 109 |
-
if not relative_volatility_index.empty: volatility['rvi'] = float(relative_volatility_index.iloc[-1])
|
| 110 |
-
return {key: value for key, value in volatility.items() if value is not None}
|
| 111 |
|
| 112 |
def _calculate_volume_indicators(self, dataframe):
|
|
|
|
| 113 |
volume = {}
|
|
|
|
|
|
|
| 114 |
if len(dataframe) >= 1:
|
| 115 |
volume_weighted_average_price = ta.vwap(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'])
|
| 116 |
-
if not volume_weighted_average_price.empty:
|
|
|
|
|
|
|
|
|
|
| 117 |
on_balance_volume = ta.obv(dataframe['close'], dataframe['volume'])
|
| 118 |
-
if not on_balance_volume.empty:
|
|
|
|
|
|
|
|
|
|
| 119 |
if len(dataframe) >= 14:
|
| 120 |
money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14)
|
| 121 |
-
if not money_flow_index.empty:
|
| 122 |
-
|
| 123 |
-
|
|
|
|
| 124 |
if len(dataframe) >= 20:
|
| 125 |
-
|
| 126 |
-
if
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
return {key: value for key, value in volume.items() if value is not None}
|
| 130 |
|
| 131 |
def _calculate_cycle_indicators(self, dataframe):
|
|
|
|
| 132 |
cycle = {}
|
|
|
|
|
|
|
| 133 |
if len(dataframe) >= 9:
|
| 134 |
hull_moving_average = ta.hma(dataframe['close'], length=9)
|
| 135 |
-
if not hull_moving_average.empty:
|
|
|
|
|
|
|
|
|
|
| 136 |
if len(dataframe) >= 10:
|
| 137 |
supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3)
|
| 138 |
if supertrend is not None:
|
| 139 |
-
if not supertrend['SUPERT_10_3.0'].empty:
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
class PatternEnhancedStrategyEngine:
|
| 147 |
def __init__(self, data_manager, learning_engine):
|
| 148 |
self.data_manager = data_manager
|
| 149 |
self.learning_engine = learning_engine
|
|
|
|
| 150 |
|
| 151 |
async def enhance_strategy_with_patterns(self, strategy_scores, pattern_analysis, symbol):
|
|
|
|
| 152 |
if not pattern_analysis or pattern_analysis.get('pattern_detected') in ['no_clear_pattern', 'insufficient_data']:
|
| 153 |
return strategy_scores
|
| 154 |
|
|
@@ -171,6 +336,7 @@ class PatternEnhancedStrategyEngine:
|
|
| 171 |
return strategy_scores
|
| 172 |
|
| 173 |
def _calculate_pattern_enhancement(self, pattern_confidence, pattern_name):
|
|
|
|
| 174 |
base_enhancement = 1.0 + (pattern_confidence * 0.3)
|
| 175 |
high_reliability_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Cup and Handle']
|
| 176 |
if pattern_name in high_reliability_patterns:
|
|
@@ -178,6 +344,7 @@ class PatternEnhancedStrategyEngine:
|
|
| 178 |
return min(base_enhancement, 1.5)
|
| 179 |
|
| 180 |
def _get_pattern_appropriate_strategies(self, pattern_name, direction):
|
|
|
|
| 181 |
reversal_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Triple Top', 'Triple Bottom']
|
| 182 |
continuation_patterns = ['Flags', 'Pennants', 'Triangles', 'Rectangles']
|
| 183 |
|
|
@@ -191,11 +358,320 @@ class PatternEnhancedStrategyEngine:
|
|
| 191 |
else:
|
| 192 |
return ['breakout_momentum', 'hybrid_ai']
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
class MultiStrategyEngine:
|
| 195 |
def __init__(self, data_manager, learning_engine):
|
| 196 |
self.data_manager = data_manager
|
| 197 |
self.learning_engine = learning_engine
|
|
|
|
| 198 |
self.pattern_enhancer = PatternEnhancedStrategyEngine(data_manager, learning_engine)
|
|
|
|
|
|
|
|
|
|
| 199 |
self.strategies = {
|
| 200 |
'trend_following': self._trend_following_strategy,
|
| 201 |
'mean_reversion': self._mean_reversion_strategy,
|
|
@@ -207,11 +683,12 @@ class MultiStrategyEngine:
|
|
| 207 |
}
|
| 208 |
|
| 209 |
async def evaluate_all_strategies(self, symbol_data, market_context):
|
|
|
|
| 210 |
try:
|
| 211 |
-
|
| 212 |
-
|
| 213 |
if self.learning_engine and hasattr(self.learning_engine, 'initialized') and self.learning_engine.initialized:
|
| 214 |
try:
|
|
|
|
| 215 |
optimized_weights = await self.learning_engine.get_optimized_strategy_weights(market_condition)
|
| 216 |
except Exception as e:
|
| 217 |
optimized_weights = await self.get_default_weights()
|
|
@@ -221,6 +698,7 @@ class MultiStrategyEngine:
|
|
| 221 |
strategy_scores = {}
|
| 222 |
base_scores = {}
|
| 223 |
|
|
|
|
| 224 |
for strategy_name, strategy_function in self.strategies.items():
|
| 225 |
try:
|
| 226 |
base_score = await strategy_function(symbol_data, market_context)
|
|
@@ -229,28 +707,25 @@ class MultiStrategyEngine:
|
|
| 229 |
weighted_score = base_score * weight
|
| 230 |
strategy_scores[strategy_name] = min(weighted_score, 1.0)
|
| 231 |
except Exception as error:
|
|
|
|
| 232 |
base_score = await self._fallback_strategy_score(strategy_name, symbol_data, market_context)
|
| 233 |
base_scores[strategy_name] = base_score
|
| 234 |
strategy_scores[strategy_name] = base_score * optimized_weights.get(strategy_name, 0.1)
|
| 235 |
|
|
|
|
| 236 |
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 237 |
if pattern_analysis:
|
| 238 |
strategy_scores = await self.pattern_enhancer.enhance_strategy_with_patterns(
|
| 239 |
strategy_scores, pattern_analysis, symbol_data.get('symbol')
|
| 240 |
)
|
| 241 |
|
|
|
|
| 242 |
if base_scores:
|
| 243 |
best_strategy = max(base_scores.items(), key=lambda x: x[1])
|
| 244 |
best_strategy_name = best_strategy[0]
|
| 245 |
best_strategy_score = best_strategy[1]
|
| 246 |
symbol_data['recommended_strategy'] = best_strategy_name
|
| 247 |
symbol_data['strategy_confidence'] = best_strategy_score
|
| 248 |
-
|
| 249 |
-
if (pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6 and
|
| 250 |
-
self._is_strategy_pattern_aligned(best_strategy_name, pattern_analysis)):
|
| 251 |
-
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.2
|
| 252 |
-
enhanced_confidence = min(best_strategy_score + pattern_bonus, 1.0)
|
| 253 |
-
symbol_data['strategy_confidence'] = enhanced_confidence
|
| 254 |
|
| 255 |
return strategy_scores, base_scores
|
| 256 |
|
|
@@ -258,20 +733,9 @@ class MultiStrategyEngine:
|
|
| 258 |
print(f"❌ خطأ في تقييم الاستراتيجيات: {error}")
|
| 259 |
fallback_scores = await self.get_fallback_scores()
|
| 260 |
return fallback_scores, fallback_scores
|
| 261 |
-
|
| 262 |
-
def _is_strategy_pattern_aligned(self, strategy_name, pattern_analysis):
|
| 263 |
-
pattern_direction = pattern_analysis.get('predicted_direction', '')
|
| 264 |
-
pattern_type = pattern_analysis.get('pattern_detected', '')
|
| 265 |
-
bullish_strategies = ['trend_following', 'breakout_momentum']
|
| 266 |
-
bearish_strategies = ['mean_reversion', 'breakout_momentum']
|
| 267 |
-
|
| 268 |
-
if pattern_direction == 'up' and strategy_name in bullish_strategies:
|
| 269 |
-
return True
|
| 270 |
-
elif pattern_direction == 'down' and strategy_name in bearish_strategies:
|
| 271 |
-
return True
|
| 272 |
-
return False
|
| 273 |
-
|
| 274 |
async def get_default_weights(self):
|
|
|
|
| 275 |
return {
|
| 276 |
'trend_following': 0.15,
|
| 277 |
'mean_reversion': 0.12,
|
|
@@ -281,8 +745,9 @@ class MultiStrategyEngine:
|
|
| 281 |
'pattern_recognition': 0.15,
|
| 282 |
'hybrid_ai': 0.10
|
| 283 |
}
|
| 284 |
-
|
| 285 |
async def get_fallback_scores(self):
|
|
|
|
| 286 |
return {
|
| 287 |
'trend_following': 0.5,
|
| 288 |
'mean_reversion': 0.5,
|
|
@@ -292,23 +757,29 @@ class MultiStrategyEngine:
|
|
| 292 |
'pattern_recognition': 0.5,
|
| 293 |
'hybrid_ai': 0.5
|
| 294 |
}
|
| 295 |
-
|
| 296 |
async def _trend_following_strategy(self, symbol_data, market_context):
|
|
|
|
| 297 |
try:
|
| 298 |
score = 0.0
|
| 299 |
indicators = symbol_data.get('advanced_indicators', {})
|
| 300 |
-
timeframes = ['4h', '1h', '15m']
|
| 301 |
|
| 302 |
-
for timeframe in
|
| 303 |
if timeframe in indicators:
|
| 304 |
timeframe_indicators = indicators[timeframe]
|
|
|
|
|
|
|
| 305 |
if self._check_ema_alignment(timeframe_indicators):
|
| 306 |
score += 0.20
|
|
|
|
|
|
|
| 307 |
adx_value = timeframe_indicators.get('adx', 0)
|
| 308 |
-
if adx_value >
|
| 309 |
score += 0.15
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
| 312 |
score += 0.10
|
| 313 |
|
| 314 |
return min(score, 1.0)
|
|
@@ -316,12 +787,14 @@ class MultiStrategyEngine:
|
|
| 316 |
return 0.3
|
| 317 |
|
| 318 |
def _check_ema_alignment(self, indicators):
|
|
|
|
| 319 |
required_emas = ['ema_9', 'ema_21', 'ema_50']
|
| 320 |
if all(ema in indicators for ema in required_emas):
|
| 321 |
return (indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50'])
|
| 322 |
return False
|
| 323 |
|
| 324 |
async def _mean_reversion_strategy(self, symbol_data, market_context):
|
|
|
|
| 325 |
try:
|
| 326 |
score = 0.0
|
| 327 |
current_price = symbol_data['current_price']
|
|
@@ -329,13 +802,18 @@ class MultiStrategyEngine:
|
|
| 329 |
|
| 330 |
if '1h' in indicators:
|
| 331 |
hourly_indicators = indicators['1h']
|
|
|
|
|
|
|
| 332 |
if all(key in hourly_indicators for key in ['bb_upper', 'bb_lower', 'bb_middle']):
|
| 333 |
-
position_in_band = (current_price - hourly_indicators['bb_lower']) / (
|
|
|
|
|
|
|
| 334 |
if position_in_band < 0.1 and hourly_indicators.get('rsi', 50) < 35:
|
| 335 |
score += 0.45
|
| 336 |
if position_in_band > 0.9 and hourly_indicators.get('rsi', 50) > 65:
|
| 337 |
score += 0.45
|
| 338 |
|
|
|
|
| 339 |
rsi_value = hourly_indicators.get('rsi', 50)
|
| 340 |
if rsi_value < 30:
|
| 341 |
score += 0.35
|
|
@@ -347,6 +825,7 @@ class MultiStrategyEngine:
|
|
| 347 |
return 0.3
|
| 348 |
|
| 349 |
async def _breakout_momentum_strategy(self, symbol_data, market_context):
|
|
|
|
| 350 |
try:
|
| 351 |
score = 0.0
|
| 352 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
@@ -354,18 +833,23 @@ class MultiStrategyEngine:
|
|
| 354 |
for timeframe in ['1h', '15m', '5m']:
|
| 355 |
if timeframe in indicators:
|
| 356 |
timeframe_indicators = indicators[timeframe]
|
|
|
|
|
|
|
| 357 |
volume_ratio = timeframe_indicators.get('volume_ratio', 0)
|
| 358 |
if volume_ratio > 1.8:
|
| 359 |
score += 0.25
|
| 360 |
elif volume_ratio > 1.3:
|
| 361 |
score += 0.15
|
| 362 |
|
|
|
|
| 363 |
if timeframe_indicators.get('macd_hist', 0) > 0:
|
| 364 |
score += 0.20
|
| 365 |
|
|
|
|
| 366 |
if 'vwap' in timeframe_indicators and symbol_data['current_price'] > timeframe_indicators['vwap']:
|
| 367 |
score += 0.15
|
| 368 |
|
|
|
|
| 369 |
rsi_value = timeframe_indicators.get('rsi', 50)
|
| 370 |
if 40 <= rsi_value <= 70:
|
| 371 |
score += 0.10
|
|
@@ -378,6 +862,7 @@ class MultiStrategyEngine:
|
|
| 378 |
return 0.4
|
| 379 |
|
| 380 |
async def _volume_spike_strategy(self, symbol_data, market_context):
|
|
|
|
| 381 |
try:
|
| 382 |
score = 0.0
|
| 383 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
@@ -397,6 +882,7 @@ class MultiStrategyEngine:
|
|
| 397 |
return 0.3
|
| 398 |
|
| 399 |
async def _whale_tracking_strategy(self, symbol_data, market_context):
|
|
|
|
| 400 |
try:
|
| 401 |
whale_data = symbol_data.get('whale_data', {})
|
| 402 |
if not whale_data.get('data_available', False):
|
|
@@ -413,37 +899,20 @@ class MultiStrategyEngine:
|
|
| 413 |
elif whale_signal.get('action') in ['STRONG_SELL', 'SELL']:
|
| 414 |
return min(confidence * 0.8, 1.0)
|
| 415 |
|
| 416 |
-
|
| 417 |
-
whale_volume = whale_data.get('total_volume', 0)
|
| 418 |
-
score = 0.0
|
| 419 |
-
|
| 420 |
-
if total_transactions >= 2:
|
| 421 |
-
score += 0.35
|
| 422 |
-
elif total_transactions >= 1:
|
| 423 |
-
score += 0.25
|
| 424 |
-
|
| 425 |
-
if whale_volume > 25000:
|
| 426 |
-
score += 0.25
|
| 427 |
-
elif whale_volume > 5000:
|
| 428 |
-
score += 0.15
|
| 429 |
-
|
| 430 |
-
general_whale = market_context.get('general_whale_activity', {})
|
| 431 |
-
if general_whale.get('data_available', False) and general_whale.get('transaction_count', 0) > 0:
|
| 432 |
-
score += 0.15
|
| 433 |
-
|
| 434 |
-
return min(score, 1.0)
|
| 435 |
except Exception as error:
|
| 436 |
return 0.2
|
| 437 |
|
| 438 |
async def _pattern_recognition_strategy(self, symbol_data, market_context):
|
|
|
|
| 439 |
try:
|
| 440 |
score = 0.0
|
| 441 |
-
indicators = symbol_data.get('advanced_indicators', {})
|
| 442 |
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 443 |
|
| 444 |
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
|
| 445 |
score += pattern_analysis.get('pattern_confidence', 0) * 0.8
|
| 446 |
else:
|
|
|
|
| 447 |
for timeframe in ['4h', '1h']:
|
| 448 |
if timeframe in indicators:
|
| 449 |
timeframe_indicators = indicators[timeframe]
|
|
@@ -451,35 +920,34 @@ class MultiStrategyEngine:
|
|
| 451 |
timeframe_indicators.get('macd_hist', 0) > 0 and
|
| 452 |
timeframe_indicators.get('volume_ratio', 0) > 1.5):
|
| 453 |
score += 0.35
|
| 454 |
-
if (timeframe_indicators.get('rsi', 50) < 40 and
|
| 455 |
-
timeframe_indicators.get('stoch_rsi_k', 50) < 20):
|
| 456 |
-
score += 0.35
|
| 457 |
|
| 458 |
return min(score, 1.0)
|
| 459 |
except Exception as error:
|
| 460 |
return 0.3
|
| 461 |
|
| 462 |
async def _hybrid_ai_strategy(self, symbol_data, market_context):
|
|
|
|
| 463 |
try:
|
| 464 |
score = 0.0
|
| 465 |
-
monte_carlo_probability = symbol_data.get('monte_carlo_probability', 0.5)
|
| 466 |
-
final_score = symbol_data.get('final_score', 0.5)
|
| 467 |
|
|
|
|
|
|
|
| 468 |
score += monte_carlo_probability * 0.4
|
|
|
|
|
|
|
|
|
|
| 469 |
score += final_score * 0.3
|
| 470 |
|
|
|
|
| 471 |
if market_context.get('btc_sentiment') == 'BULLISH':
|
| 472 |
-
score += 0.
|
| 473 |
elif market_context.get('btc_sentiment') == 'BEARISH':
|
| 474 |
score -= 0.08
|
| 475 |
|
| 476 |
-
|
| 477 |
-
if whale_activity.get('sentiment') == 'BULLISH':
|
| 478 |
-
score += 0.15
|
| 479 |
-
|
| 480 |
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 481 |
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
|
| 482 |
-
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.
|
| 483 |
score += pattern_bonus
|
| 484 |
|
| 485 |
return max(0.0, min(score, 1.0))
|
|
@@ -487,8 +955,10 @@ class MultiStrategyEngine:
|
|
| 487 |
return 0.3
|
| 488 |
|
| 489 |
async def _fallback_strategy_score(self, strategy_name, symbol_data, market_context):
|
|
|
|
| 490 |
try:
|
| 491 |
base_score = symbol_data.get('final_score', 0.5)
|
|
|
|
| 492 |
if strategy_name == 'trend_following':
|
| 493 |
indicators = symbol_data.get('advanced_indicators', {})
|
| 494 |
if '1h' in indicators:
|
|
@@ -498,6 +968,7 @@ class MultiStrategyEngine:
|
|
| 498 |
if ema_9 and ema_21 and ema_9 > ema_21 and 40 <= rsi_value <= 60:
|
| 499 |
return 0.6
|
| 500 |
return 0.4
|
|
|
|
| 501 |
elif strategy_name == 'mean_reversion':
|
| 502 |
current_price = symbol_data.get('current_price', 0)
|
| 503 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
@@ -507,19 +978,19 @@ class MultiStrategyEngine:
|
|
| 507 |
if bb_lower and current_price <= bb_lower * 1.02 and rsi_value < 35:
|
| 508 |
return 0.7
|
| 509 |
return 0.3
|
|
|
|
| 510 |
elif strategy_name == 'breakout_momentum':
|
| 511 |
volume_ratio = symbol_data.get('advanced_indicators', {}).get('1h', {}).get('volume_ratio', 0)
|
| 512 |
if volume_ratio > 1.5:
|
| 513 |
return 0.6
|
| 514 |
return 0.4
|
|
|
|
| 515 |
elif strategy_name == 'whale_tracking':
|
| 516 |
whale_data = symbol_data.get('whale_data', {})
|
| 517 |
if not whale_data.get('data_available', False):
|
| 518 |
return 0.2
|
| 519 |
-
total_transactions = whale_data.get('transfer_count', 0)
|
| 520 |
-
if total_transactions >= 3:
|
| 521 |
-
return 0.5
|
| 522 |
return 0.3
|
|
|
|
| 523 |
return base_score
|
| 524 |
except Exception as error:
|
| 525 |
return 0.3
|
|
@@ -531,698 +1002,159 @@ class MLProcessor:
|
|
| 531 |
self.learning_engine = learning_engine
|
| 532 |
self.technical_analyzer = AdvancedTechnicalAnalyzer()
|
| 533 |
self.strategy_engine = MultiStrategyEngine(data_manager, learning_engine)
|
|
|
|
|
|
|
| 534 |
|
| 535 |
-
async def
|
| 536 |
-
"""
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
|
|
|
| 549 |
try:
|
| 550 |
-
|
| 551 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
|
| 553 |
-
|
| 554 |
-
print(f" 🔍 تم تحليل {analyzed_count} عملة متقدمًا...")
|
| 555 |
|
| 556 |
-
#
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
|
| 565 |
-
|
| 566 |
-
|
|
|
|
|
|
|
| 567 |
|
| 568 |
-
#
|
| 569 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
**advanced_analysis,
|
| 575 |
-
'ohlcv_data': ohlcv_data,
|
| 576 |
-
'current_price': current_price
|
| 577 |
-
}
|
| 578 |
-
candidates.append(enhanced_candidate)
|
| 579 |
|
| 580 |
-
|
| 581 |
-
print(f"
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
"""إجراء التحليل المتقدم للعملة"""
|
| 603 |
-
analysis = {}
|
| 604 |
-
|
| 605 |
try:
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
# حساب الدرجة النهائية للطبقة 2
|
| 619 |
-
layer2_score = (
|
| 620 |
-
ml_indicators.get('technical_score', 0) * 0.30 +
|
| 621 |
-
monte_carlo_score * 0.25 +
|
| 622 |
-
pattern_analysis.get('pattern_confidence', 0) * 0.20 +
|
| 623 |
-
strategy_analysis.get('strategy_score', 0) * 0.25
|
| 624 |
)
|
| 625 |
|
| 626 |
-
|
| 627 |
-
**ml_indicators,
|
| 628 |
-
'monte_carlo_score': monte_carlo_score,
|
| 629 |
-
'pattern_analysis': pattern_analysis,
|
| 630 |
-
'strategy_analysis': strategy_analysis,
|
| 631 |
-
'layer2_score': layer2_score,
|
| 632 |
-
'advanced_analysis_timestamp': datetime.now().isoformat()
|
| 633 |
-
}
|
| 634 |
|
| 635 |
except Exception as e:
|
| 636 |
-
print(f"❌ خطأ في
|
| 637 |
-
analysis
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
'strategy_analysis': {'strategy_score': 0.3},
|
| 642 |
-
'layer2_score': 0.3
|
| 643 |
-
}
|
| 644 |
-
|
| 645 |
-
return analysis
|
| 646 |
-
|
| 647 |
-
async def _calculate_ml_indicators(self, symbol: str, ohlcv_data: Dict, current_price: float) -> Dict[str, Any]:
|
| 648 |
-
"""حساب مؤشرات ML المتقدمة"""
|
| 649 |
try:
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
# استخدام المحلل التقني المتقدم
|
| 654 |
-
dataframe_1h = self._convert_ohlcv_to_dataframe(ohlcv_data['1h'])
|
| 655 |
-
indicators_1h = self.technical_analyzer.calculate_all_indicators(dataframe_1h, '1h')
|
| 656 |
|
| 657 |
-
|
| 658 |
-
|
| 659 |
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
# تجميع جميع المؤشرات
|
| 664 |
-
all_indicators = {
|
| 665 |
-
'1h': indicators_1h,
|
| 666 |
-
'4h': indicators_4h,
|
| 667 |
-
'15m': indicators_15m
|
| 668 |
-
}
|
| 669 |
-
|
| 670 |
-
# حساب الدرجة التقنية الشاملة
|
| 671 |
-
technical_score = self._calculate_comprehensive_technical_score(all_indicators, current_price)
|
| 672 |
|
| 673 |
return {
|
| 674 |
-
'
|
| 675 |
-
'
|
| 676 |
-
'
|
| 677 |
-
'
|
| 678 |
-
'volume_ratio_1h': indicators_1h.get('volume_ratio', 1.0),
|
| 679 |
-
'ema_alignment': self._check_ema_alignment_advanced(indicators_1h)
|
| 680 |
}
|
| 681 |
|
| 682 |
-
except Exception as
|
| 683 |
-
print(f"❌ خطأ في
|
| 684 |
-
return
|
| 685 |
-
|
| 686 |
-
def
|
| 687 |
-
"""
|
| 688 |
-
if not
|
| 689 |
-
return pd.DataFrame()
|
| 690 |
-
|
| 691 |
-
df = pd.DataFrame(ohlcv_data, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
| 692 |
-
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].apply(pd.to_numeric)
|
| 693 |
-
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
|
| 694 |
-
df.set_index('timestamp', inplace=True)
|
| 695 |
-
return df
|
| 696 |
-
|
| 697 |
-
def _calculate_comprehensive_technical_score(self, indicators: Dict, current_price: float) -> float:
|
| 698 |
-
"""حساب درجة تقنية شاملة"""
|
| 699 |
-
score = 0.0
|
| 700 |
-
weights = {
|
| 701 |
-
'momentum': 0.25,
|
| 702 |
-
'trend': 0.25,
|
| 703 |
-
'volume': 0.20,
|
| 704 |
-
'volatility': 0.15,
|
| 705 |
-
'cycle': 0.15
|
| 706 |
-
}
|
| 707 |
-
|
| 708 |
-
try:
|
| 709 |
-
# تحليل الزخم
|
| 710 |
-
momentum_score = self._calculate_momentum_score(indicators)
|
| 711 |
-
|
| 712 |
-
# تحليل الاتجاه
|
| 713 |
-
trend_score = self._calculate_trend_score(indicators)
|
| 714 |
-
|
| 715 |
-
# تحليل الحجم
|
| 716 |
-
volume_score = self._calculate_volume_score(indicators)
|
| 717 |
-
|
| 718 |
-
# تحليل التقلب
|
| 719 |
-
volatility_score = self._calculate_volatility_score(indicators, current_price)
|
| 720 |
-
|
| 721 |
-
# تحليل الدورات
|
| 722 |
-
cycle_score = self._calculate_cycle_score(indicators)
|
| 723 |
-
|
| 724 |
-
# الدرجة النهائية
|
| 725 |
-
score = (
|
| 726 |
-
momentum_score * weights['momentum'] +
|
| 727 |
-
trend_score * weights['trend'] +
|
| 728 |
-
volume_score * weights['volume'] +
|
| 729 |
-
volatility_score * weights['volatility'] +
|
| 730 |
-
cycle_score * weights['cycle']
|
| 731 |
-
)
|
| 732 |
-
|
| 733 |
-
except Exception as e:
|
| 734 |
-
print(f"❌ خطأ في حساب الدرجة التقنية: {e}")
|
| 735 |
-
score = 0.3
|
| 736 |
-
|
| 737 |
-
return min(score, 1.0)
|
| 738 |
-
|
| 739 |
-
def _calculate_momentum_score(self, indicators: Dict) -> float:
|
| 740 |
-
"""حساب درجة الزخم"""
|
| 741 |
-
score = 0.0
|
| 742 |
-
|
| 743 |
-
if '1h' in indicators:
|
| 744 |
-
indicators_1h = indicators['1h']
|
| 745 |
-
rsi = indicators_1h.get('rsi', 50)
|
| 746 |
-
macd_hist = indicators_1h.get('macd_hist', 0)
|
| 747 |
-
stoch_rsi_k = indicators_1h.get('stoch_rsi_k', 50)
|
| 748 |
-
|
| 749 |
-
# RSI في المنطقة المثالية (30-70)
|
| 750 |
-
if 30 <= rsi <= 70:
|
| 751 |
-
score += 0.3
|
| 752 |
-
elif rsi < 30 or rsi > 70:
|
| 753 |
-
score += 0.1
|
| 754 |
-
|
| 755 |
-
# MACD موجب
|
| 756 |
-
if macd_hist > 0:
|
| 757 |
-
score += 0.3
|
| 758 |
-
elif macd_hist < 0:
|
| 759 |
-
score += 0.1
|
| 760 |
-
|
| 761 |
-
# Stochastic RSI
|
| 762 |
-
if 20 <= stoch_rsi_k <= 80:
|
| 763 |
-
score += 0.2
|
| 764 |
-
elif stoch_rsi_k < 20 or stoch_rsi_k > 80:
|
| 765 |
-
score += 0.1
|
| 766 |
-
|
| 767 |
-
# مؤشرات زخم إضافية
|
| 768 |
-
if indicators_1h.get('awesome_oscillator', 0) > 0:
|
| 769 |
-
score += 0.2
|
| 770 |
-
|
| 771 |
-
return min(score, 1.0)
|
| 772 |
-
|
| 773 |
-
def _calculate_trend_score(self, indicators: Dict) -> float:
|
| 774 |
-
"""حساب درجة الاتجاه"""
|
| 775 |
-
score = 0.0
|
| 776 |
-
|
| 777 |
-
if '1h' in indicators:
|
| 778 |
-
indicators_1h = indicators['1h']
|
| 779 |
-
|
| 780 |
-
# محاذاة المتوسطات المتحركة
|
| 781 |
-
ema_alignment = self._check_ema_alignment_advanced(indicators_1h)
|
| 782 |
-
if ema_alignment == 'BULLISH':
|
| 783 |
-
score += 0.4
|
| 784 |
-
elif ema_alignment == 'BEARISH':
|
| 785 |
-
score += 0.2
|
| 786 |
-
else:
|
| 787 |
-
score += 0.1
|
| 788 |
-
|
| 789 |
-
# قوة الاتجاه (ADX)
|
| 790 |
-
adx = indicators_1h.get('adx', 0)
|
| 791 |
-
if adx > 25:
|
| 792 |
-
score += 0.3
|
| 793 |
-
elif adx > 15:
|
| 794 |
-
score += 0.2
|
| 795 |
-
else:
|
| 796 |
-
score += 0.1
|
| 797 |
-
|
| 798 |
-
# اتجاه المتوسط المتحرك الهولندي
|
| 799 |
-
hull_ma = indicators_1h.get('hull_ma')
|
| 800 |
-
if hull_ma and 'ema_9' in indicators_1h:
|
| 801 |
-
if hull_ma > indicators_1h['ema_9']:
|
| 802 |
-
score += 0.3
|
| 803 |
-
else:
|
| 804 |
-
score += 0.1
|
| 805 |
-
|
| 806 |
-
return min(score, 1.0)
|
| 807 |
-
|
| 808 |
-
def _check_ema_alignment_advanced(self, indicators: Dict) -> str:
|
| 809 |
-
"""فحص محاذاة المتوسطات المتحركة بشكل متقدم"""
|
| 810 |
-
required_emas = ['ema_9', 'ema_21', 'ema_50']
|
| 811 |
-
if all(ema in indicators for ema in required_emas):
|
| 812 |
-
if indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50']:
|
| 813 |
-
return 'BULLISH'
|
| 814 |
-
elif indicators['ema_9'] < indicators['ema_21'] < indicators['ema_50']:
|
| 815 |
-
return 'BEARISH'
|
| 816 |
-
return 'NEUTRAL'
|
| 817 |
-
|
| 818 |
-
def _calculate_volume_score(self, indicators: Dict) -> float:
|
| 819 |
-
"""حساب درجة الحجم"""
|
| 820 |
-
score = 0.0
|
| 821 |
-
|
| 822 |
-
if '1h' in indicators:
|
| 823 |
-
indicators_1h = indicators['1h']
|
| 824 |
-
volume_ratio = indicators_1h.get('volume_ratio', 1.0)
|
| 825 |
-
obv = indicators_1h.get('obv', 0)
|
| 826 |
-
mfi = indicators_1h.get('mfi', 50)
|
| 827 |
-
|
| 828 |
-
# نسبة الحجم
|
| 829 |
-
if volume_ratio > 1.5:
|
| 830 |
-
score += 0.4
|
| 831 |
-
elif volume_ratio > 1.2:
|
| 832 |
-
score += 0.3
|
| 833 |
-
elif volume_ratio > 1.0:
|
| 834 |
-
score += 0.2
|
| 835 |
-
else:
|
| 836 |
-
score += 0.1
|
| 837 |
-
|
| 838 |
-
# مؤشر OBV
|
| 839 |
-
if obv > 0:
|
| 840 |
-
score += 0.3
|
| 841 |
-
elif obv < 0:
|
| 842 |
-
score += 0.1
|
| 843 |
-
|
| 844 |
-
# مؤشر تدفق الأموال
|
| 845 |
-
if 20 <= mfi <= 80:
|
| 846 |
-
score += 0.3
|
| 847 |
-
elif mfi < 20 or mfi > 80:
|
| 848 |
-
score += 0.1
|
| 849 |
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
"""حساب درجة التقلب"""
|
| 854 |
-
score = 0.0
|
| 855 |
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
# تقلب ATR مثالي (1%-5%)
|
| 862 |
-
if 1 <= atr_percent <= 5:
|
| 863 |
-
score += 0.5
|
| 864 |
-
elif atr_percent < 1 or atr_percent > 10:
|
| 865 |
-
score += 0.2
|
| 866 |
-
else:
|
| 867 |
-
score += 0.3
|
| 868 |
-
|
| 869 |
-
# عرض باندولر بينجر
|
| 870 |
-
if bb_width > 0:
|
| 871 |
-
if 0.02 <= bb_width <= 0.08: # عرض مثالي
|
| 872 |
-
score += 0.5
|
| 873 |
-
else:
|
| 874 |
-
score += 0.3
|
| 875 |
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
def _calculate_cycle_score(self, indicators: Dict) -> float:
|
| 879 |
-
"""حساب درجة الدورات"""
|
| 880 |
-
score = 0.0
|
| 881 |
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
# تحويل فيشر
|
| 894 |
-
if -2 <= fisher_transform <= 2:
|
| 895 |
-
score += 0.3
|
| 896 |
-
else:
|
| 897 |
-
score += 0.1
|
| 898 |
-
|
| 899 |
-
# مؤشرات دورية إضافية
|
| 900 |
-
if indicators_1h.get('hull_ma'):
|
| 901 |
-
score += 0.3
|
| 902 |
|
| 903 |
-
return
|
| 904 |
-
|
| 905 |
-
async def _monte_carlo_1h_prediction(self, ohlcv_data: Dict, current_price: float) -> float:
|
| 906 |
-
"""
|
| 907 |
-
محاكاة مونت كارلو للتنبؤ بالساعة القادمة
|
| 908 |
-
تركز على احتمالية تحقيق الربح في الساعة القادمة
|
| 909 |
-
"""
|
| 910 |
-
try:
|
| 911 |
-
if '1h' not in ohlcv_data or '15m' not in ohlcv_data:
|
| 912 |
-
return 0.5
|
| 913 |
-
|
| 914 |
-
ohlcv_1h = ohlcv_data['1h']
|
| 915 |
-
ohlcv_15m = ohlcv_data['15m']
|
| 916 |
-
|
| 917 |
-
if len(ohlcv_1h) < 24 or len(ohlcv_15m) < 16:
|
| 918 |
-
return 0.5
|
| 919 |
-
|
| 920 |
-
# استخدام بيانات 1h و 15m معاً لدقة أفضل
|
| 921 |
-
all_closes = []
|
| 922 |
-
|
| 923 |
-
# إضافة بيانات 1h
|
| 924 |
-
all_closes.extend([candle[4] for candle in ohlcv_1h])
|
| 925 |
-
|
| 926 |
-
# إضافة بيانات 15m للأربع ساعات الأخيرة
|
| 927 |
-
recent_15m = [candle[4] for candle in ohlcv_15m[-16:]] # آخر 4 ساعات
|
| 928 |
-
all_closes.extend(recent_15m)
|
| 929 |
-
|
| 930 |
-
if len(all_closes) < 30:
|
| 931 |
-
return 0.5
|
| 932 |
-
|
| 933 |
-
closes = np.array(all_closes)
|
| 934 |
-
|
| 935 |
-
# حساب العوائد اللوغاريتمية
|
| 936 |
-
log_returns = np.diff(np.log(closes))
|
| 937 |
-
|
| 938 |
-
if len(log_returns) < 20:
|
| 939 |
-
return 0.5
|
| 940 |
-
|
| 941 |
-
mean_return = np.mean(log_returns)
|
| 942 |
-
std_return = np.std(log_returns)
|
| 943 |
-
|
| 944 |
-
# محاكاة مونت كارلو للساعة القادمة
|
| 945 |
-
num_simulations = 1000
|
| 946 |
-
target_periods = 4 # 4 فترات من 15m = ساعة واحدة
|
| 947 |
-
profit_threshold = 0.005 # 0.5% ربح
|
| 948 |
-
|
| 949 |
-
success_count = 0
|
| 950 |
-
|
| 951 |
-
for _ in range(num_simulations):
|
| 952 |
-
simulated_price = current_price
|
| 953 |
-
|
| 954 |
-
# محاكاة حركة السعر للساعة القادمة (4 فترات × 15 دقيقة)
|
| 955 |
-
for _ in range(target_periods):
|
| 956 |
-
# حركة عشوائية بناءً على التوزيع الطبيعي للعوائد
|
| 957 |
-
random_return = np.random.normal(mean_return, std_return)
|
| 958 |
-
simulated_price *= np.exp(random_return)
|
| 959 |
-
|
| 960 |
-
# نجاح إذا حقق ربح 0.5% أو أكثر
|
| 961 |
-
if simulated_price >= current_price * (1 + profit_threshold):
|
| 962 |
-
success_count += 1
|
| 963 |
-
|
| 964 |
-
probability = success_count / num_simulations
|
| 965 |
-
|
| 966 |
-
# تعديل الاحتمالية بناءً على قوة الاتجاه الحالي
|
| 967 |
-
if len(closes) >= 10:
|
| 968 |
-
recent_trend = (closes[-1] - closes[-10]) / closes[-10]
|
| 969 |
-
if recent_trend > 0.02: # اتجاه صعودي قوي
|
| 970 |
-
probability = min(probability * 1.2, 0.95)
|
| 971 |
-
elif recent_trend < -0.02: # اتجاه هبوطي قوي
|
| 972 |
-
probability = max(probability * 0.8, 0.05)
|
| 973 |
-
|
| 974 |
-
return probability
|
| 975 |
-
|
| 976 |
-
except Exception as e:
|
| 977 |
-
print(f"❌ خطأ في محاكاة مونت كارلو: {e}")
|
| 978 |
-
return 0.5
|
| 979 |
-
|
| 980 |
-
async def _detect_chart_patterns(self, ohlcv_data: Dict) -> Dict[str, Any]:
|
| 981 |
-
"""اكتشاف الأنماط البيانية"""
|
| 982 |
-
try:
|
| 983 |
-
if '1h' not in ohlcv_data:
|
| 984 |
-
return {'pattern_detected': 'no_data', 'pattern_confidence': 0}
|
| 985 |
-
|
| 986 |
-
ohlcv_1h = ohlcv_data['1h']
|
| 987 |
-
highs_1h = np.array([candle[2] for candle in ohlcv_1h])
|
| 988 |
-
lows_1h = np.array([candle[3] for candle in ohlcv_1h])
|
| 989 |
-
closes_1h = np.array([candle[4] for candle in ohlcv_1h])
|
| 990 |
-
|
| 991 |
-
pattern = 'no_clear_pattern'
|
| 992 |
-
confidence = 0.0
|
| 993 |
-
|
| 994 |
-
# اكتشاف الأنماط الأساسية
|
| 995 |
-
patterns = []
|
| 996 |
-
|
| 997 |
-
# 1. نمط القمة المزدوجة / القاع المزدوج
|
| 998 |
-
double_pattern = self._detect_double_top_bottom(highs_1h, lows_1h, closes_1h)
|
| 999 |
-
if double_pattern['detected']:
|
| 1000 |
-
patterns.append((double_pattern['pattern'], double_pattern['confidence']))
|
| 1001 |
-
|
| 1002 |
-
# 2. نمط الاختراق
|
| 1003 |
-
breakout_pattern = self._detect_breakout(highs_1h, lows_1h, closes_1h)
|
| 1004 |
-
if breakout_pattern['detected']:
|
| 1005 |
-
patterns.append((breakout_pattern['pattern'], breakout_pattern['confidence']))
|
| 1006 |
-
|
| 1007 |
-
# 3. نمط الاتجاه
|
| 1008 |
-
trend_pattern = self._detect_trend_pattern(closes_1h)
|
| 1009 |
-
if trend_pattern['detected']:
|
| 1010 |
-
patterns.append((trend_pattern['pattern'], trend_pattern['confidence']))
|
| 1011 |
-
|
| 1012 |
-
# 4. نمط الرأس والكتفين
|
| 1013 |
-
head_shoulders_pattern = self._detect_head_shoulders(highs_1h, lows_1h, closes_1h)
|
| 1014 |
-
if head_shoulders_pattern['detected']:
|
| 1015 |
-
patterns.append((head_shoulders_pattern['pattern'], head_shoulders_pattern['confidence']))
|
| 1016 |
-
|
| 1017 |
-
# اختيار النمط الأعلى ثقة
|
| 1018 |
-
if patterns:
|
| 1019 |
-
best_pattern = max(patterns, key=lambda x: x[1])
|
| 1020 |
-
pattern, confidence = best_pattern
|
| 1021 |
-
|
| 1022 |
-
return {
|
| 1023 |
-
'pattern_detected': pattern,
|
| 1024 |
-
'pattern_confidence': confidence,
|
| 1025 |
-
'patterns_analyzed': len(patterns)
|
| 1026 |
-
}
|
| 1027 |
-
|
| 1028 |
-
except Exception as e:
|
| 1029 |
-
print(f"❌ خطأ في اكتشاف الأنماط: {e}")
|
| 1030 |
-
return {'pattern_detected': 'error', 'pattern_confidence': 0}
|
| 1031 |
-
|
| 1032 |
-
def _detect_double_top_bottom(self, highs: np.ndarray, lows: np.ndarray, closes: np.ndarray) -> Dict[str, Any]:
|
| 1033 |
-
"""اكتشاف نمط القمة المزدوجة أو القاع المزدوج"""
|
| 1034 |
-
try:
|
| 1035 |
-
if len(highs) < 10:
|
| 1036 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1037 |
-
|
| 1038 |
-
# البحث عن قمتين متقاربتين أو قاعين متقاربين
|
| 1039 |
-
recent_highs = highs[-10:]
|
| 1040 |
-
recent_lows = lows[-10:]
|
| 1041 |
-
|
| 1042 |
-
max_high_idx = np.argmax(recent_highs)
|
| 1043 |
-
second_high_idx = -1
|
| 1044 |
-
max_low_idx = np.argmin(recent_lows)
|
| 1045 |
-
second_low_idx = -1
|
| 1046 |
-
|
| 1047 |
-
# البحث عن القمة الثانية
|
| 1048 |
-
for i in range(len(recent_highs)):
|
| 1049 |
-
if i != max_high_idx and recent_highs[i] >= np.max(recent_highs) * 0.98:
|
| 1050 |
-
second_high_idx = i
|
| 1051 |
-
break
|
| 1052 |
-
|
| 1053 |
-
# البحث عن القاع الثاني
|
| 1054 |
-
for i in range(len(recent_lows)):
|
| 1055 |
-
if i != max_low_idx and recent_lows[i] <= np.min(recent_lows) * 1.02:
|
| 1056 |
-
second_low_idx = i
|
| 1057 |
-
break
|
| 1058 |
-
|
| 1059 |
-
if second_high_idx != -1 and abs(max_high_idx - second_high_idx) >= 2:
|
| 1060 |
-
return {
|
| 1061 |
-
'detected': True,
|
| 1062 |
-
'pattern': 'double_top',
|
| 1063 |
-
'confidence': 0.7,
|
| 1064 |
-
'direction': 'BEARISH'
|
| 1065 |
-
}
|
| 1066 |
-
elif second_low_idx != -1 and abs(max_low_idx - second_low_idx) >= 2:
|
| 1067 |
-
return {
|
| 1068 |
-
'detected': True,
|
| 1069 |
-
'pattern': 'double_bottom',
|
| 1070 |
-
'confidence': 0.7,
|
| 1071 |
-
'direction': 'BULLISH'
|
| 1072 |
-
}
|
| 1073 |
-
|
| 1074 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1075 |
-
|
| 1076 |
-
except Exception as e:
|
| 1077 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1078 |
-
|
| 1079 |
-
def _detect_breakout(self, highs: np.ndarray, lows: np.ndarray, closes: np.ndarray) -> Dict[str, Any]:
|
| 1080 |
-
"""اكتشاف نمط الاختراق"""
|
| 1081 |
-
try:
|
| 1082 |
-
if len(highs) < 20:
|
| 1083 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1084 |
-
|
| 1085 |
-
current_price = closes[-1]
|
| 1086 |
-
resistance = np.max(highs[-20:-5]) # مقاومة من الفترة السابقة
|
| 1087 |
-
support = np.min(lows[-20:-5]) # دعم من الفترة السابقة
|
| 1088 |
-
|
| 1089 |
-
# اختراق المقاومة
|
| 1090 |
-
if current_price > resistance * 1.01:
|
| 1091 |
-
return {
|
| 1092 |
-
'detected': True,
|
| 1093 |
-
'pattern': 'breakout_up',
|
| 1094 |
-
'confidence': 0.8,
|
| 1095 |
-
'direction': 'BULLISH'
|
| 1096 |
-
}
|
| 1097 |
-
# اختراق الدعم
|
| 1098 |
-
elif current_price < support * 0.99:
|
| 1099 |
-
return {
|
| 1100 |
-
'detected': True,
|
| 1101 |
-
'pattern': 'breakout_down',
|
| 1102 |
-
'confidence': 0.8,
|
| 1103 |
-
'direction': 'BEARISH'
|
| 1104 |
-
}
|
| 1105 |
-
|
| 1106 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1107 |
-
|
| 1108 |
-
except Exception as e:
|
| 1109 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1110 |
-
|
| 1111 |
-
def _detect_trend_pattern(self, closes: np.ndarray) -> Dict[str, Any]:
|
| 1112 |
-
"""اكتشاف نمط الاتجاه"""
|
| 1113 |
-
try:
|
| 1114 |
-
if len(closes) < 20:
|
| 1115 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1116 |
-
|
| 1117 |
-
# حساب المتوسطات المتحركة
|
| 1118 |
-
ma_short = np.mean(closes[-5:])
|
| 1119 |
-
ma_long = np.mean(closes[-15:])
|
| 1120 |
-
|
| 1121 |
-
if ma_short > ma_long and closes[-1] > ma_short:
|
| 1122 |
-
return {
|
| 1123 |
-
'detected': True,
|
| 1124 |
-
'pattern': 'uptrend',
|
| 1125 |
-
'confidence': 0.6,
|
| 1126 |
-
'direction': 'BULLISH'
|
| 1127 |
-
}
|
| 1128 |
-
elif ma_short < ma_long and closes[-1] < ma_short:
|
| 1129 |
-
return {
|
| 1130 |
-
'detected': True,
|
| 1131 |
-
'pattern': 'downtrend',
|
| 1132 |
-
'confidence': 0.6,
|
| 1133 |
-
'direction': 'BEARISH'
|
| 1134 |
-
}
|
| 1135 |
-
|
| 1136 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1137 |
-
|
| 1138 |
-
except Exception as e:
|
| 1139 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1140 |
-
|
| 1141 |
-
def _detect_head_shoulders(self, highs: np.ndarray, lows: np.ndarray, closes: np.ndarray) -> Dict[str, Any]:
|
| 1142 |
-
"""اكتشاف نمط الرأس والكتفين"""
|
| 1143 |
-
try:
|
| 1144 |
-
if len(highs) < 10:
|
| 1145 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1146 |
-
|
| 1147 |
-
# البحث عن نمط الرأس والكتفين المبسط
|
| 1148 |
-
recent_highs = highs[-10:]
|
| 1149 |
-
|
| 1150 |
-
# البحث عن أعلى ثلاث قمم
|
| 1151 |
-
peak_indices = []
|
| 1152 |
-
for i in range(1, len(recent_highs)-1):
|
| 1153 |
-
if recent_highs[i] > recent_highs[i-1] and recent_highs[i] > recent_highs[i+1]:
|
| 1154 |
-
peak_indices.append(i)
|
| 1155 |
-
|
| 1156 |
-
if len(peak_indices) >= 3:
|
| 1157 |
-
# تأكيد نمط الرأس والكتفين (الرأس أعلى من الكتفين)
|
| 1158 |
-
peaks = [recent_highs[i] for i in peak_indices[-3:]]
|
| 1159 |
-
if peaks[1] > peaks[0] and peaks[1] > peaks[2] and abs(peaks[0] - peaks[2]) / peaks[1] < 0.05:
|
| 1160 |
-
return {
|
| 1161 |
-
'detected': True,
|
| 1162 |
-
'pattern': 'head_shoulders',
|
| 1163 |
-
'confidence': 0.75,
|
| 1164 |
-
'direction': 'BEARISH'
|
| 1165 |
-
}
|
| 1166 |
-
|
| 1167 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1168 |
-
|
| 1169 |
-
except Exception as e:
|
| 1170 |
-
return {'detected': False, 'pattern': '', 'confidence': 0}
|
| 1171 |
-
|
| 1172 |
-
async def _analyze_trading_strategies(self, symbol: str, ohlcv_data: Dict, current_price: float, ml_indicators: Dict) -> Dict[str, Any]:
|
| 1173 |
-
"""تحليل استراتيجيات التداول المناسبة"""
|
| 1174 |
-
try:
|
| 1175 |
-
# إعداد بيانات الرمز للتحليل
|
| 1176 |
-
symbol_data = {
|
| 1177 |
-
'symbol': symbol,
|
| 1178 |
-
'current_price': current_price,
|
| 1179 |
-
'advanced_indicators': ml_indicators.get('advanced_indicators', {}),
|
| 1180 |
-
'pattern_analysis': ml_indicators.get('pattern_analysis', {}),
|
| 1181 |
-
'technical_score': ml_indicators.get('technical_score', 0.5),
|
| 1182 |
-
'monte_carlo_probability': ml_indicators.get('monte_carlo_score', 0.5)
|
| 1183 |
-
}
|
| 1184 |
-
|
| 1185 |
-
# تقييم جميع الاستراتيجيات
|
| 1186 |
-
strategy_scores, base_scores = await self.strategy_engine.evaluate_all_strategies(symbol_data, self.market_context)
|
| 1187 |
-
|
| 1188 |
-
# العثور على أفضل استراتيجية
|
| 1189 |
-
best_strategy = max(strategy_scores.items(), key=lambda x: x[1]) if strategy_scores else ('GENERIC', 0.5)
|
| 1190 |
-
|
| 1191 |
-
return {
|
| 1192 |
-
'strategy_score': best_strategy[1],
|
| 1193 |
-
'recommended_strategy': best_strategy[0],
|
| 1194 |
-
'all_strategy_scores': strategy_scores,
|
| 1195 |
-
'base_strategy_scores': base_scores
|
| 1196 |
-
}
|
| 1197 |
-
|
| 1198 |
-
except Exception as e:
|
| 1199 |
-
print(f"❌ خطأ في تحليل الاستراتيجيات لـ {symbol}: {e}")
|
| 1200 |
-
return {
|
| 1201 |
-
'strategy_score': 0.3,
|
| 1202 |
-
'recommended_strategy': 'GENERIC',
|
| 1203 |
-
'all_strategy_scores': {},
|
| 1204 |
-
'base_strategy_scores': {}
|
| 1205 |
-
}
|
| 1206 |
-
|
| 1207 |
-
# الدوال الحالية الموجودة في ML.py تبقى كما هي
|
| 1208 |
-
async def process_and_score_symbol_enhanced(self, raw_data):
|
| 1209 |
-
# ... الكود الحالي يبقى كما هو
|
| 1210 |
-
pass
|
| 1211 |
-
|
| 1212 |
-
def _validate_rsi_safety(self, indicators):
|
| 1213 |
-
# ... الكود الحالي يبقى كما هو
|
| 1214 |
-
pass
|
| 1215 |
-
|
| 1216 |
-
def _validate_indicators_quality_enhanced(self, indicators, current_price):
|
| 1217 |
-
# ... الكود الحالي يبقى كما هو
|
| 1218 |
-
pass
|
| 1219 |
-
|
| 1220 |
-
def _calculate_enhanced_score_with_safety(self, base_analysis, strategy_scores, quality_issues):
|
| 1221 |
-
# ... الكود الحالي يبقى كما هو
|
| 1222 |
-
pass
|
| 1223 |
-
|
| 1224 |
-
def filter_top_candidates(self, candidates, number_of_candidates=10):
|
| 1225 |
-
# ... الكود الحالي يبقى كما هو
|
| 1226 |
-
pass
|
| 1227 |
|
| 1228 |
-
print("✅
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import pandas_ta as ta
|
| 4 |
import numpy as np
|
| 5 |
+
from datetime import datetime, timedelta
|
| 6 |
import asyncio
|
|
|
|
| 7 |
|
| 8 |
class AdvancedTechnicalAnalyzer:
|
| 9 |
def __init__(self):
|
|
|
|
| 16 |
}
|
| 17 |
|
| 18 |
def calculate_all_indicators(self, dataframe, timeframe):
|
| 19 |
+
"""حساب جميع المؤشرات الفنية للإطار الزمني المحدد"""
|
| 20 |
+
if dataframe.empty:
|
| 21 |
+
return {}
|
| 22 |
+
|
| 23 |
indicators = {}
|
| 24 |
indicators.update(self._calculate_trend_indicators(dataframe))
|
| 25 |
indicators.update(self._calculate_momentum_indicators(dataframe))
|
| 26 |
indicators.update(self._calculate_volatility_indicators(dataframe))
|
| 27 |
indicators.update(self._calculate_volume_indicators(dataframe))
|
| 28 |
indicators.update(self._calculate_cycle_indicators(dataframe))
|
| 29 |
+
|
| 30 |
return indicators
|
| 31 |
|
| 32 |
def _calculate_trend_indicators(self, dataframe):
|
| 33 |
+
"""حساب مؤشرات الاتجاه"""
|
| 34 |
trend = {}
|
| 35 |
+
|
| 36 |
+
# المتوسطات المتحركة
|
| 37 |
+
if len(dataframe) >= 9:
|
| 38 |
+
trend['ema_9'] = float(ta.ema(dataframe['close'], length=9).iloc[-1])
|
| 39 |
+
if len(dataframe) >= 21:
|
| 40 |
+
trend['ema_21'] = float(ta.ema(dataframe['close'], length=21).iloc[-1])
|
| 41 |
+
if len(dataframe) >= 50:
|
| 42 |
+
trend['ema_50'] = float(ta.ema(dataframe['close'], length=50).iloc[-1])
|
| 43 |
+
if len(dataframe) >= 200:
|
| 44 |
+
trend['ema_200'] = float(ta.ema(dataframe['close'], length=200).iloc[-1])
|
| 45 |
+
|
| 46 |
+
# إيشيموكو
|
| 47 |
if len(dataframe) >= 26:
|
| 48 |
ichimoku = ta.ichimoku(dataframe['high'], dataframe['low'], dataframe['close'])
|
| 49 |
if ichimoku is not None:
|
| 50 |
+
if not ichimoku[0]['ITS_9'].empty:
|
| 51 |
+
trend['ichimoku_conversion'] = float(ichimoku[0]['ITS_9'].iloc[-1])
|
| 52 |
+
if not ichimoku[0]['IKS_26'].empty:
|
| 53 |
+
trend['ichimoku_base'] = float(ichimoku[0]['IKS_26'].iloc[-1])
|
| 54 |
+
|
| 55 |
+
# ADX - قوة الاتجاه
|
| 56 |
if len(dataframe) >= 14:
|
| 57 |
adx_result = ta.adx(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
|
| 58 |
if adx_result is not None:
|
| 59 |
+
if not adx_result['ADX_14'].empty:
|
| 60 |
+
trend['adx'] = float(adx_result['ADX_14'].iloc[-1])
|
| 61 |
+
|
| 62 |
+
return {key: value for key, value in trend.items() if value is not None and not np.isnan(value)}
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def _calculate_momentum_indicators(self, dataframe):
|
| 65 |
+
"""حساب مؤشرات الزخم"""
|
| 66 |
momentum = {}
|
| 67 |
+
|
| 68 |
+
# RSI
|
| 69 |
if len(dataframe) >= 14:
|
| 70 |
rsi = ta.rsi(dataframe['close'], length=14)
|
| 71 |
+
if not rsi.empty:
|
| 72 |
+
momentum['rsi'] = float(rsi.iloc[-1])
|
| 73 |
+
|
| 74 |
+
# MACD
|
|
|
|
|
|
|
| 75 |
if len(dataframe) >= 26:
|
| 76 |
macd = ta.macd(dataframe['close'])
|
| 77 |
if macd is not None:
|
| 78 |
+
if not macd['MACDh_12_26_9'].empty:
|
| 79 |
+
momentum['macd_hist'] = float(macd['MACDh_12_26_9'].iloc[-1])
|
| 80 |
+
if not macd['MACD_12_26_9'].empty:
|
| 81 |
+
momentum['macd_line'] = float(macd['MACD_12_26_9'].iloc[-1])
|
| 82 |
+
|
| 83 |
+
# ستوكاستك RSI
|
| 84 |
+
if len(dataframe) >= 14:
|
| 85 |
+
stoch_rsi = ta.stochrsi(dataframe['close'], length=14)
|
| 86 |
+
if stoch_rsi is not None:
|
| 87 |
+
if not stoch_rsi['STOCHRSIk_14_14_3_3'].empty:
|
| 88 |
+
momentum['stoch_rsi_k'] = float(stoch_rsi['STOCHRSIk_14_14_3_3'].iloc[-1])
|
| 89 |
+
|
| 90 |
+
# ويليامز %R
|
| 91 |
if len(dataframe) >= 14:
|
| 92 |
williams = ta.willr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
|
| 93 |
+
if not williams.empty:
|
| 94 |
+
momentum['williams_r'] = float(williams.iloc[-1])
|
| 95 |
+
|
| 96 |
+
return {key: value for key, value in momentum.items() if value is not None and not np.isnan(value)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
def _calculate_volatility_indicators(self, dataframe):
|
| 99 |
+
"""حساب مؤشرات التقلب"""
|
| 100 |
volatility = {}
|
| 101 |
+
|
| 102 |
+
# بولينجر باندز
|
| 103 |
if len(dataframe) >= 20:
|
| 104 |
bollinger_bands = ta.bbands(dataframe['close'], length=20, std=2)
|
| 105 |
if bollinger_bands is not None:
|
| 106 |
+
if not bollinger_bands['BBL_20_2.0'].empty:
|
| 107 |
+
volatility['bb_lower'] = float(bollinger_bands['BBL_20_2.0'].iloc[-1])
|
| 108 |
+
if not bollinger_bands['BBU_20_2.0'].empty:
|
| 109 |
+
volatility['bb_upper'] = float(bollinger_bands['BBU_20_2.0'].iloc[-1])
|
| 110 |
+
if not bollinger_bands['BBM_20_2.0'].empty:
|
| 111 |
+
volatility['bb_middle'] = float(bollinger_bands['BBM_20_2.0'].iloc[-1])
|
| 112 |
+
|
| 113 |
+
# متوسط المدى الحقيقي (ATR)
|
| 114 |
if len(dataframe) >= 14:
|
| 115 |
average_true_range = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
|
| 116 |
if not average_true_range.empty:
|
| 117 |
volatility['atr'] = float(average_true_range.iloc[-1])
|
| 118 |
+
if volatility['atr'] and dataframe['close'].iloc[-1] > 0:
|
| 119 |
+
volatility['atr_percent'] = (volatility['atr'] / dataframe['close'].iloc[-1]) * 100
|
| 120 |
+
|
| 121 |
+
return {key: value for key, value in volatility.items() if value is not None and not np.isnan(value)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
def _calculate_volume_indicators(self, dataframe):
|
| 124 |
+
"""حساب مؤشرات الحجم"""
|
| 125 |
volume = {}
|
| 126 |
+
|
| 127 |
+
# VWAP
|
| 128 |
if len(dataframe) >= 1:
|
| 129 |
volume_weighted_average_price = ta.vwap(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'])
|
| 130 |
+
if not volume_weighted_average_price.empty:
|
| 131 |
+
volume['vwap'] = float(volume_weighted_average_price.iloc[-1])
|
| 132 |
+
|
| 133 |
+
# OBV
|
| 134 |
on_balance_volume = ta.obv(dataframe['close'], dataframe['volume'])
|
| 135 |
+
if not on_balance_volume.empty:
|
| 136 |
+
volume['obv'] = float(on_balance_volume.iloc[-1])
|
| 137 |
+
|
| 138 |
+
# MFI
|
| 139 |
if len(dataframe) >= 14:
|
| 140 |
money_flow_index = ta.mfi(dataframe['high'], dataframe['low'], dataframe['close'], dataframe['volume'], length=14)
|
| 141 |
+
if not money_flow_index.empty:
|
| 142 |
+
volume['mfi'] = float(money_flow_index.iloc[-1])
|
| 143 |
+
|
| 144 |
+
# نسبة الحجم
|
| 145 |
if len(dataframe) >= 20:
|
| 146 |
+
volume_avg_20 = float(dataframe['volume'].tail(20).mean())
|
| 147 |
+
if volume_avg_20 and volume_avg_20 > 0:
|
| 148 |
+
volume['volume_ratio'] = float(dataframe['volume'].iloc[-1] / volume_avg_20)
|
| 149 |
+
|
| 150 |
+
return {key: value for key, value in volume.items() if value is not None and not np.isnan(value)}
|
| 151 |
|
| 152 |
def _calculate_cycle_indicators(self, dataframe):
|
| 153 |
+
"""حساب مؤشرات الدورة"""
|
| 154 |
cycle = {}
|
| 155 |
+
|
| 156 |
+
# هول موفينج افريج
|
| 157 |
if len(dataframe) >= 9:
|
| 158 |
hull_moving_average = ta.hma(dataframe['close'], length=9)
|
| 159 |
+
if not hull_moving_average.empty:
|
| 160 |
+
cycle['hull_ma'] = float(hull_moving_average.iloc[-1])
|
| 161 |
+
|
| 162 |
+
# سوبرتريند
|
| 163 |
if len(dataframe) >= 10:
|
| 164 |
supertrend = ta.supertrend(dataframe['high'], dataframe['low'], dataframe['close'], length=10, multiplier=3)
|
| 165 |
if supertrend is not None:
|
| 166 |
+
if not supertrend['SUPERT_10_3.0'].empty:
|
| 167 |
+
cycle['supertrend'] = float(supertrend['SUPERT_10_3.0'].iloc[-1])
|
| 168 |
+
|
| 169 |
+
return {key: value for key, value in cycle.items() if value is not None and not np.isnan(value)}
|
| 170 |
+
|
| 171 |
+
class MonteCarloAnalyzer:
|
| 172 |
+
def __init__(self):
|
| 173 |
+
self.simulation_results = {}
|
| 174 |
+
|
| 175 |
+
async def predict_1h_probability(self, ohlcv_data):
|
| 176 |
+
"""
|
| 177 |
+
محاكاة مونت كارلو للتنبؤ بالساعة القادمة
|
| 178 |
+
تركز على احتمالية تحقيق ربح 0.5% في الساعة القادمة
|
| 179 |
+
"""
|
| 180 |
+
try:
|
| 181 |
+
if not ohlcv_data or '1h' not in ohlcv_data or len(ohlcv_data['1h']) < 24:
|
| 182 |
+
return 0.5
|
| 183 |
+
|
| 184 |
+
# استخدام بيانات 1h و 15m معاً لدقة أفضل
|
| 185 |
+
all_closes = []
|
| 186 |
+
|
| 187 |
+
# إضافة بيانات 1h
|
| 188 |
+
all_closes.extend([candle[4] for candle in ohlcv_data['1h']])
|
| 189 |
+
|
| 190 |
+
# إضافة بيانات 15m إن وجدت
|
| 191 |
+
if '15m' in ohlcv_data and len(ohlcv_data['15m']) >= 16:
|
| 192 |
+
recent_15m = [candle[4] for candle in ohlcv_data['15m'][-16:]]
|
| 193 |
+
all_closes.extend(recent_15m)
|
| 194 |
+
|
| 195 |
+
if len(all_closes) < 30:
|
| 196 |
+
return 0.5
|
| 197 |
+
|
| 198 |
+
closes = np.array(all_closes)
|
| 199 |
+
current_price = closes[-1]
|
| 200 |
+
|
| 201 |
+
# حساب العوائد اللوغاريتمية بدقة
|
| 202 |
+
log_returns = []
|
| 203 |
+
for i in range(1, len(closes)):
|
| 204 |
+
if closes[i-1] > 0:
|
| 205 |
+
log_return = np.log(closes[i] / closes[i-1])
|
| 206 |
+
log_returns.append(log_return)
|
| 207 |
+
|
| 208 |
+
if len(log_returns) < 20:
|
| 209 |
+
return 0.5
|
| 210 |
+
|
| 211 |
+
log_returns = np.array(log_returns)
|
| 212 |
+
mean_return = np.mean(log_returns)
|
| 213 |
+
std_return = np.std(log_returns)
|
| 214 |
+
|
| 215 |
+
# محاكاة مونت كارلو للساعة القادمة
|
| 216 |
+
num_simulations = 2000 # زيادة عدد المحاكاة للدقة
|
| 217 |
+
target_periods = 1 # الساعة القادمة
|
| 218 |
+
profit_threshold = 0.005 # هدف ربح 0.5%
|
| 219 |
+
|
| 220 |
+
success_count = 0
|
| 221 |
+
simulation_details = []
|
| 222 |
+
|
| 223 |
+
for i in range(num_simulations):
|
| 224 |
+
simulated_price = current_price
|
| 225 |
+
|
| 226 |
+
# محاكاة حركة السعر للساعة القادمة
|
| 227 |
+
for period in range(target_periods):
|
| 228 |
+
# حركة عشوائية بناءً على التوزيع الطبيعي للعوائد
|
| 229 |
+
random_return = np.random.normal(mean_return, std_return)
|
| 230 |
+
simulated_price *= np.exp(random_return)
|
| 231 |
+
|
| 232 |
+
# نجاح إذا حقق ربح 0.5% أو أكثر
|
| 233 |
+
price_change = (simulated_price - current_price) / current_price
|
| 234 |
+
if price_change >= profit_threshold:
|
| 235 |
+
success_count += 1
|
| 236 |
+
|
| 237 |
+
# تخزين تفاصيل المحاكاة للتحليل
|
| 238 |
+
if i < 100: # نخزن أول 100 محاكاة فقط
|
| 239 |
+
simulation_details.append({
|
| 240 |
+
'simulation': i,
|
| 241 |
+
'final_price': simulated_price,
|
| 242 |
+
'profit_percent': price_change * 100
|
| 243 |
+
})
|
| 244 |
+
|
| 245 |
+
probability = success_count / num_simulations
|
| 246 |
+
|
| 247 |
+
# تحسين الاحتمالية بناءً على الاتجاه الحالي
|
| 248 |
+
trend_adjustment = self._calculate_trend_adjustment(closes)
|
| 249 |
+
adjusted_probability = probability * trend_adjustment
|
| 250 |
+
|
| 251 |
+
# تخزين النتائج للتحليل
|
| 252 |
+
self.simulation_results = {
|
| 253 |
+
'base_probability': probability,
|
| 254 |
+
'adjusted_probability': adjusted_probability,
|
| 255 |
+
'success_count': success_count,
|
| 256 |
+
'total_simulations': num_simulations,
|
| 257 |
+
'mean_return': mean_return,
|
| 258 |
+
'std_return': std_return,
|
| 259 |
+
'trend_adjustment': trend_adjustment,
|
| 260 |
+
'simulation_details': simulation_details[:10] # أول 10 فقط للعرض
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
return min(max(adjusted_probability, 0.01), 0.99) # حدود معقولة
|
| 264 |
+
|
| 265 |
+
except Exception as e:
|
| 266 |
+
print(f"❌ خطأ في محاكاة مونت كارلو: {e}")
|
| 267 |
+
return 0.5
|
| 268 |
+
|
| 269 |
+
def _calculate_trend_adjustment(self, closes):
|
| 270 |
+
"""حساب معامل تعديل الاتجاه"""
|
| 271 |
+
try:
|
| 272 |
+
if len(closes) < 10:
|
| 273 |
+
return 1.0
|
| 274 |
+
|
| 275 |
+
# حساب الاتجاه القصير (آخر 10 فترات)
|
| 276 |
+
recent_trend = (closes[-1] - closes[-10]) / closes[-10]
|
| 277 |
+
|
| 278 |
+
# حساب قوة الاتجاه باستخدام RSI مبسط
|
| 279 |
+
gains = []
|
| 280 |
+
losses = []
|
| 281 |
+
for i in range(1, min(14, len(closes))):
|
| 282 |
+
change = closes[-(i+1)] - closes[-i]
|
| 283 |
+
if change > 0:
|
| 284 |
+
gains.append(change)
|
| 285 |
+
else:
|
| 286 |
+
losses.append(abs(change))
|
| 287 |
+
|
| 288 |
+
avg_gain = np.mean(gains) if gains else 0
|
| 289 |
+
avg_loss = np.mean(losses) if losses else 1
|
| 290 |
+
rs = avg_gain / avg_loss
|
| 291 |
+
trend_strength = 100 - (100 / (1 + rs))
|
| 292 |
+
|
| 293 |
+
# تعديل الاحتمالية بناءً على الاتجاه وقوته
|
| 294 |
+
if recent_trend > 0.02 and trend_strength > 60: # اتجاه صعودي قوي
|
| 295 |
+
return 1.3
|
| 296 |
+
elif recent_trend > 0.01 and trend_strength > 50: # اتجاه صعودي متوسط
|
| 297 |
+
return 1.15
|
| 298 |
+
elif recent_trend < -0.02 and trend_strength < 40: # اتجاه هبوطي قوي
|
| 299 |
+
return 0.7
|
| 300 |
+
elif recent_trend < -0.01 and trend_strength < 50: # اتجاه هبوطي متوسط
|
| 301 |
+
return 0.85
|
| 302 |
+
else: # اتجاه جانبي
|
| 303 |
+
return 1.0
|
| 304 |
+
|
| 305 |
+
except Exception as e:
|
| 306 |
+
print(f"❌ خطأ في حساب تعديل الاتجاه: {e}")
|
| 307 |
+
return 1.0
|
| 308 |
|
| 309 |
class PatternEnhancedStrategyEngine:
|
| 310 |
def __init__(self, data_manager, learning_engine):
|
| 311 |
self.data_manager = data_manager
|
| 312 |
self.learning_engine = learning_engine
|
| 313 |
+
self.pattern_analyzer = ChartPatternAnalyzer()
|
| 314 |
|
| 315 |
async def enhance_strategy_with_patterns(self, strategy_scores, pattern_analysis, symbol):
|
| 316 |
+
"""تعزيز الاستراتيجيات بناءً على الأنماط المكتشفة"""
|
| 317 |
if not pattern_analysis or pattern_analysis.get('pattern_detected') in ['no_clear_pattern', 'insufficient_data']:
|
| 318 |
return strategy_scores
|
| 319 |
|
|
|
|
| 336 |
return strategy_scores
|
| 337 |
|
| 338 |
def _calculate_pattern_enhancement(self, pattern_confidence, pattern_name):
|
| 339 |
+
"""حساب عامل التعزيز بناءً على ثقة النمط ونوعه"""
|
| 340 |
base_enhancement = 1.0 + (pattern_confidence * 0.3)
|
| 341 |
high_reliability_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Cup and Handle']
|
| 342 |
if pattern_name in high_reliability_patterns:
|
|
|
|
| 344 |
return min(base_enhancement, 1.5)
|
| 345 |
|
| 346 |
def _get_pattern_appropriate_strategies(self, pattern_name, direction):
|
| 347 |
+
"""تحديد الاستراتيجيات المناسبة للنمط المكتشف"""
|
| 348 |
reversal_patterns = ['Double Top', 'Double Bottom', 'Head & Shoulders', 'Triple Top', 'Triple Bottom']
|
| 349 |
continuation_patterns = ['Flags', 'Pennants', 'Triangles', 'Rectangles']
|
| 350 |
|
|
|
|
| 358 |
else:
|
| 359 |
return ['breakout_momentum', 'hybrid_ai']
|
| 360 |
|
| 361 |
+
class ChartPatternAnalyzer:
|
| 362 |
+
def __init__(self):
|
| 363 |
+
self.pattern_cache = {}
|
| 364 |
+
|
| 365 |
+
async def detect_chart_patterns(self, ohlcv_data):
|
| 366 |
+
"""اكتشاف الأنماط البيانية لجميع الأطر الزمنية"""
|
| 367 |
+
patterns = {
|
| 368 |
+
'pattern_detected': 'no_clear_pattern',
|
| 369 |
+
'pattern_confidence': 0,
|
| 370 |
+
'predicted_direction': 'neutral',
|
| 371 |
+
'timeframe_analysis': {},
|
| 372 |
+
'all_patterns': []
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
# تحليل كل إطار زمني
|
| 377 |
+
for timeframe, candles in ohlcv_data.items():
|
| 378 |
+
if candles and len(candles) >= 20:
|
| 379 |
+
dataframe = self._create_dataframe(candles)
|
| 380 |
+
timeframe_pattern = await self._analyze_timeframe_patterns(dataframe, timeframe)
|
| 381 |
+
patterns['timeframe_analysis'][timeframe] = timeframe_pattern
|
| 382 |
+
patterns['all_patterns'].append(timeframe_pattern)
|
| 383 |
+
|
| 384 |
+
# اختيار النمط الأعلى ثقة
|
| 385 |
+
if timeframe_pattern['confidence'] > patterns['pattern_confidence']:
|
| 386 |
+
patterns.update({
|
| 387 |
+
'pattern_detected': timeframe_pattern['pattern'],
|
| 388 |
+
'pattern_confidence': timeframe_pattern['confidence'],
|
| 389 |
+
'predicted_direction': timeframe_pattern['direction']
|
| 390 |
+
})
|
| 391 |
+
|
| 392 |
+
return patterns
|
| 393 |
+
|
| 394 |
+
except Exception as e:
|
| 395 |
+
print(f"❌ خطأ في اكتشاف الأنماط: {e}")
|
| 396 |
+
return patterns
|
| 397 |
+
|
| 398 |
+
def _create_dataframe(self, candles):
|
| 399 |
+
"""إنشاء DataFrame من بيانات الشموع"""
|
| 400 |
+
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
| 401 |
+
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
|
| 402 |
+
return df
|
| 403 |
+
|
| 404 |
+
async def _analyze_timeframe_patterns(self, dataframe, timeframe):
|
| 405 |
+
"""تحليل الأنماط لإطار زمني محدد"""
|
| 406 |
+
pattern_info = {
|
| 407 |
+
'pattern': 'no_clear_pattern',
|
| 408 |
+
'confidence': 0,
|
| 409 |
+
'direction': 'neutral',
|
| 410 |
+
'timeframe': timeframe,
|
| 411 |
+
'details': {}
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
try:
|
| 415 |
+
if len(dataframe) < 20:
|
| 416 |
+
return pattern_info
|
| 417 |
+
|
| 418 |
+
closes = dataframe['close'].values
|
| 419 |
+
highs = dataframe['high'].values
|
| 420 |
+
lows = dataframe['low'].values
|
| 421 |
+
current_price = closes[-1]
|
| 422 |
+
|
| 423 |
+
# اكتشاف الأنماط المختلفة
|
| 424 |
+
patterns_detected = []
|
| 425 |
+
|
| 426 |
+
# 1. القمة المزدوجة / القاع المزدوج
|
| 427 |
+
double_pattern = self._detect_double_pattern(highs, lows, closes)
|
| 428 |
+
if double_pattern['detected']:
|
| 429 |
+
patterns_detected.append(double_pattern)
|
| 430 |
+
|
| 431 |
+
# 2. الاختراق
|
| 432 |
+
breakout_pattern = self._detect_breakout_pattern(highs, lows, closes)
|
| 433 |
+
if breakout_pattern['detected']:
|
| 434 |
+
patterns_detected.append(breakout_pattern)
|
| 435 |
+
|
| 436 |
+
# 3. الاتجاه
|
| 437 |
+
trend_pattern = self._detect_trend_pattern(dataframe)
|
| 438 |
+
if trend_pattern['detected']:
|
| 439 |
+
patterns_detected.append(trend_pattern)
|
| 440 |
+
|
| 441 |
+
# 4. الدعم والمقاومة
|
| 442 |
+
support_resistance_pattern = self._detect_support_resistance(highs, lows, closes)
|
| 443 |
+
if support_resistance_pattern['detected']:
|
| 444 |
+
patterns_detected.append(support_resistance_pattern)
|
| 445 |
+
|
| 446 |
+
# اختيار النمط الأقوى
|
| 447 |
+
if patterns_detected:
|
| 448 |
+
best_pattern = max(patterns_detected, key=lambda x: x['confidence'])
|
| 449 |
+
pattern_info.update({
|
| 450 |
+
'pattern': best_pattern['pattern'],
|
| 451 |
+
'confidence': best_pattern['confidence'],
|
| 452 |
+
'direction': best_pattern.get('direction', 'neutral'),
|
| 453 |
+
'details': best_pattern.get('details', {})
|
| 454 |
+
})
|
| 455 |
+
|
| 456 |
+
return pattern_info
|
| 457 |
+
|
| 458 |
+
except Exception as e:
|
| 459 |
+
print(f"❌ خطأ في تحليل الأنماط للإطار {timeframe}: {e}")
|
| 460 |
+
return pattern_info
|
| 461 |
+
|
| 462 |
+
def _detect_double_pattern(self, highs, lows, closes):
|
| 463 |
+
"""كشف نمط القمة المزدوجة أو القاع المزدوج"""
|
| 464 |
+
try:
|
| 465 |
+
if len(highs) < 15:
|
| 466 |
+
return {'detected': False}
|
| 467 |
+
|
| 468 |
+
# البحث عن قمتين متقاربتين
|
| 469 |
+
recent_highs = highs[-15:]
|
| 470 |
+
recent_lows = lows[-15:]
|
| 471 |
+
|
| 472 |
+
# العثور على أعلى قمتين
|
| 473 |
+
high_indices = np.argsort(recent_highs)[-2:]
|
| 474 |
+
high_indices.sort()
|
| 475 |
+
|
| 476 |
+
# العثور على أقل قاعين
|
| 477 |
+
low_indices = np.argsort(recent_lows)[:2]
|
| 478 |
+
low_indices.sort()
|
| 479 |
+
|
| 480 |
+
double_top = False
|
| 481 |
+
double_bottom = False
|
| 482 |
+
|
| 483 |
+
# التحقق من القمة المزدوجة
|
| 484 |
+
if len(high_indices) == 2:
|
| 485 |
+
high1 = recent_highs[high_indices[0]]
|
| 486 |
+
high2 = recent_highs[high_indices[1]]
|
| 487 |
+
time_diff = high_indices[1] - high_indices[0]
|
| 488 |
+
|
| 489 |
+
if (abs(high1 - high2) / high1 < 0.02 and # القمتان متقاربتان
|
| 490 |
+
time_diff >= 3 and time_diff <= 10 and # الفاصل الزمني معقول
|
| 491 |
+
closes[-1] < min(high1, high2)): # السعر تحت القمتين
|
| 492 |
+
double_top = True
|
| 493 |
+
|
| 494 |
+
# التحقق من القاع المزدوج
|
| 495 |
+
if len(low_indices) == 2:
|
| 496 |
+
low1 = recent_lows[low_indices[0]]
|
| 497 |
+
low2 = recent_lows[low_indices[1]]
|
| 498 |
+
time_diff = low_indices[1] - low_indices[0]
|
| 499 |
+
|
| 500 |
+
if (abs(low1 - low2) / low1 < 0.02 and # القاعان متقاربان
|
| 501 |
+
time_diff >= 3 and time_diff <= 10 and # الفاصل الزمني معقول
|
| 502 |
+
closes[-1] > max(low1, low2)): # السعر فوق القاعين
|
| 503 |
+
double_bottom = True
|
| 504 |
+
|
| 505 |
+
if double_top:
|
| 506 |
+
return {
|
| 507 |
+
'detected': True,
|
| 508 |
+
'pattern': 'Double Top',
|
| 509 |
+
'confidence': 0.75,
|
| 510 |
+
'direction': 'down',
|
| 511 |
+
'details': {
|
| 512 |
+
'resistance_level': np.mean([high1, high2]),
|
| 513 |
+
'breakdown_level': min(lows[-5:])
|
| 514 |
+
}
|
| 515 |
+
}
|
| 516 |
+
elif double_bottom:
|
| 517 |
+
return {
|
| 518 |
+
'detected': True,
|
| 519 |
+
'pattern': 'Double Bottom',
|
| 520 |
+
'confidence': 0.75,
|
| 521 |
+
'direction': 'up',
|
| 522 |
+
'details': {
|
| 523 |
+
'support_level': np.mean([low1, low2]),
|
| 524 |
+
'breakout_level': max(highs[-5:])
|
| 525 |
+
}
|
| 526 |
+
}
|
| 527 |
+
|
| 528 |
+
return {'detected': False}
|
| 529 |
+
|
| 530 |
+
except Exception as e:
|
| 531 |
+
return {'detected': False}
|
| 532 |
+
|
| 533 |
+
def _detect_breakout_pattern(self, highs, lows, closes):
|
| 534 |
+
"""كشف نمط الاختراق"""
|
| 535 |
+
try:
|
| 536 |
+
if len(highs) < 25:
|
| 537 |
+
return {'detected': False}
|
| 538 |
+
|
| 539 |
+
current_price = closes[-1]
|
| 540 |
+
|
| 541 |
+
# حساب مستويات الدعم والمقاومة
|
| 542 |
+
resistance = np.max(highs[-25:-5]) # مقاومة من الفترة السابقة
|
| 543 |
+
support = np.min(lows[-25:-5]) # دعم من الفترة السابقة
|
| 544 |
+
|
| 545 |
+
# اختراق المقاومة
|
| 546 |
+
if current_price > resistance * 1.01:
|
| 547 |
+
return {
|
| 548 |
+
'detected': True,
|
| 549 |
+
'pattern': 'Breakout Up',
|
| 550 |
+
'confidence': 0.8,
|
| 551 |
+
'direction': 'up',
|
| 552 |
+
'details': {
|
| 553 |
+
'breakout_level': resistance,
|
| 554 |
+
'target_level': resistance * 1.05
|
| 555 |
+
}
|
| 556 |
+
}
|
| 557 |
+
# اختراق الدعم
|
| 558 |
+
elif current_price < support * 0.99:
|
| 559 |
+
return {
|
| 560 |
+
'detected': True,
|
| 561 |
+
'pattern': 'Breakout Down',
|
| 562 |
+
'confidence': 0.8,
|
| 563 |
+
'direction': 'down',
|
| 564 |
+
'details': {
|
| 565 |
+
'breakdown_level': support,
|
| 566 |
+
'target_level': support * 0.95
|
| 567 |
+
}
|
| 568 |
+
}
|
| 569 |
+
|
| 570 |
+
return {'detected': False}
|
| 571 |
+
|
| 572 |
+
except Exception as e:
|
| 573 |
+
return {'detected': False}
|
| 574 |
+
|
| 575 |
+
def _detect_trend_pattern(self, dataframe):
|
| 576 |
+
"""كشف نمط الاتجاه"""
|
| 577 |
+
try:
|
| 578 |
+
if len(dataframe) < 20:
|
| 579 |
+
return {'detected': False}
|
| 580 |
+
|
| 581 |
+
closes = dataframe['close'].values
|
| 582 |
+
|
| 583 |
+
# حساب المتوسطات المتحركة
|
| 584 |
+
ma_short = np.mean(closes[-5:])
|
| 585 |
+
ma_medium = np.mean(closes[-13:])
|
| 586 |
+
ma_long = np.mean(closes[-21:])
|
| 587 |
+
|
| 588 |
+
# تحديد قوة الاتجاه
|
| 589 |
+
if ma_short > ma_medium > ma_long and closes[-1] > ma_short:
|
| 590 |
+
trend_strength = (ma_short - ma_long) / ma_long
|
| 591 |
+
confidence = min(0.3 + trend_strength * 10, 0.8)
|
| 592 |
+
return {
|
| 593 |
+
'detected': True,
|
| 594 |
+
'pattern': 'Uptrend',
|
| 595 |
+
'confidence': confidence,
|
| 596 |
+
'direction': 'up',
|
| 597 |
+
'details': {
|
| 598 |
+
'trend_strength': trend_strength,
|
| 599 |
+
'support_level': ma_medium
|
| 600 |
+
}
|
| 601 |
+
}
|
| 602 |
+
elif ma_short < ma_medium < ma_long and closes[-1] < ma_short:
|
| 603 |
+
trend_strength = (ma_long - ma_short) / ma_long
|
| 604 |
+
confidence = min(0.3 + trend_strength * 10, 0.8)
|
| 605 |
+
return {
|
| 606 |
+
'detected': True,
|
| 607 |
+
'pattern': 'Downtrend',
|
| 608 |
+
'confidence': confidence,
|
| 609 |
+
'direction': 'down',
|
| 610 |
+
'details': {
|
| 611 |
+
'trend_strength': trend_strength,
|
| 612 |
+
'resistance_level': ma_medium
|
| 613 |
+
}
|
| 614 |
+
}
|
| 615 |
+
|
| 616 |
+
return {'detected': False}
|
| 617 |
+
|
| 618 |
+
except Exception as e:
|
| 619 |
+
return {'detected': False}
|
| 620 |
+
|
| 621 |
+
def _detect_support_resistance(self, highs, lows, closes):
|
| 622 |
+
"""كشف مستويات الدعم والمقاومة"""
|
| 623 |
+
try:
|
| 624 |
+
if len(highs) < 20:
|
| 625 |
+
return {'detected': False}
|
| 626 |
+
|
| 627 |
+
current_price = closes[-1]
|
| 628 |
+
|
| 629 |
+
# حساب مستويات الدعم والمقاومة من البيانات التاريخية
|
| 630 |
+
resistance_level = np.max(highs[-20:])
|
| 631 |
+
support_level = np.min(lows[-20:])
|
| 632 |
+
|
| 633 |
+
# تحديد إذا كان السعر قرب أحد هذه المستويات
|
| 634 |
+
position = (current_price - support_level) / (resistance_level - support_level)
|
| 635 |
+
|
| 636 |
+
if position < 0.2: # قرب الدعم
|
| 637 |
+
return {
|
| 638 |
+
'detected': True,
|
| 639 |
+
'pattern': 'Near Support',
|
| 640 |
+
'confidence': 0.6,
|
| 641 |
+
'direction': 'up',
|
| 642 |
+
'details': {
|
| 643 |
+
'support_level': support_level,
|
| 644 |
+
'resistance_level': resistance_level,
|
| 645 |
+
'position': position
|
| 646 |
+
}
|
| 647 |
+
}
|
| 648 |
+
elif position > 0.8: # قرب المقاومة
|
| 649 |
+
return {
|
| 650 |
+
'detected': True,
|
| 651 |
+
'pattern': 'Near Resistance',
|
| 652 |
+
'confidence': 0.6,
|
| 653 |
+
'direction': 'down',
|
| 654 |
+
'details': {
|
| 655 |
+
'support_level': support_level,
|
| 656 |
+
'resistance_level': resistance_level,
|
| 657 |
+
'position': position
|
| 658 |
+
}
|
| 659 |
+
}
|
| 660 |
+
|
| 661 |
+
return {'detected': False}
|
| 662 |
+
|
| 663 |
+
except Exception as e:
|
| 664 |
+
return {'detected': False}
|
| 665 |
+
|
| 666 |
class MultiStrategyEngine:
|
| 667 |
def __init__(self, data_manager, learning_engine):
|
| 668 |
self.data_manager = data_manager
|
| 669 |
self.learning_engine = learning_engine
|
| 670 |
+
self.technical_analyzer = AdvancedTechnicalAnalyzer()
|
| 671 |
self.pattern_enhancer = PatternEnhancedStrategyEngine(data_manager, learning_engine)
|
| 672 |
+
self.monte_carlo_analyzer = MonteCarloAnalyzer()
|
| 673 |
+
self.pattern_analyzer = ChartPatternAnalyzer()
|
| 674 |
+
|
| 675 |
self.strategies = {
|
| 676 |
'trend_following': self._trend_following_strategy,
|
| 677 |
'mean_reversion': self._mean_reversion_strategy,
|
|
|
|
| 683 |
}
|
| 684 |
|
| 685 |
async def evaluate_all_strategies(self, symbol_data, market_context):
|
| 686 |
+
"""تقييم جميع استراتيجيات التداول"""
|
| 687 |
try:
|
| 688 |
+
# الحصول على الأوزان المثلى من محرك التعلم
|
|
|
|
| 689 |
if self.learning_engine and hasattr(self.learning_engine, 'initialized') and self.learning_engine.initialized:
|
| 690 |
try:
|
| 691 |
+
market_condition = market_context.get('market_trend', 'sideways_market')
|
| 692 |
optimized_weights = await self.learning_engine.get_optimized_strategy_weights(market_condition)
|
| 693 |
except Exception as e:
|
| 694 |
optimized_weights = await self.get_default_weights()
|
|
|
|
| 698 |
strategy_scores = {}
|
| 699 |
base_scores = {}
|
| 700 |
|
| 701 |
+
# تقييم كل استراتيجية
|
| 702 |
for strategy_name, strategy_function in self.strategies.items():
|
| 703 |
try:
|
| 704 |
base_score = await strategy_function(symbol_data, market_context)
|
|
|
|
| 707 |
weighted_score = base_score * weight
|
| 708 |
strategy_scores[strategy_name] = min(weighted_score, 1.0)
|
| 709 |
except Exception as error:
|
| 710 |
+
print(f"❌ خطأ في تقييم استراتيجية {strategy_name}: {error}")
|
| 711 |
base_score = await self._fallback_strategy_score(strategy_name, symbol_data, market_context)
|
| 712 |
base_scores[strategy_name] = base_score
|
| 713 |
strategy_scores[strategy_name] = base_score * optimized_weights.get(strategy_name, 0.1)
|
| 714 |
|
| 715 |
+
# تطبيق تعزيز الأنماط
|
| 716 |
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 717 |
if pattern_analysis:
|
| 718 |
strategy_scores = await self.pattern_enhancer.enhance_strategy_with_patterns(
|
| 719 |
strategy_scores, pattern_analysis, symbol_data.get('symbol')
|
| 720 |
)
|
| 721 |
|
| 722 |
+
# تحديث الاستراتيجية الموصى بها
|
| 723 |
if base_scores:
|
| 724 |
best_strategy = max(base_scores.items(), key=lambda x: x[1])
|
| 725 |
best_strategy_name = best_strategy[0]
|
| 726 |
best_strategy_score = best_strategy[1]
|
| 727 |
symbol_data['recommended_strategy'] = best_strategy_name
|
| 728 |
symbol_data['strategy_confidence'] = best_strategy_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
|
| 730 |
return strategy_scores, base_scores
|
| 731 |
|
|
|
|
| 733 |
print(f"❌ خطأ في تقييم الاستراتيجيات: {error}")
|
| 734 |
fallback_scores = await self.get_fallback_scores()
|
| 735 |
return fallback_scores, fallback_scores
|
| 736 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 737 |
async def get_default_weights(self):
|
| 738 |
+
"""الأوزان الافتراضية للاستراتيجيات"""
|
| 739 |
return {
|
| 740 |
'trend_following': 0.15,
|
| 741 |
'mean_reversion': 0.12,
|
|
|
|
| 745 |
'pattern_recognition': 0.15,
|
| 746 |
'hybrid_ai': 0.10
|
| 747 |
}
|
| 748 |
+
|
| 749 |
async def get_fallback_scores(self):
|
| 750 |
+
"""الدرجات الاحتياطية عند الخطأ"""
|
| 751 |
return {
|
| 752 |
'trend_following': 0.5,
|
| 753 |
'mean_reversion': 0.5,
|
|
|
|
| 757 |
'pattern_recognition': 0.5,
|
| 758 |
'hybrid_ai': 0.5
|
| 759 |
}
|
| 760 |
+
|
| 761 |
async def _trend_following_strategy(self, symbol_data, market_context):
|
| 762 |
+
"""استراتيجية تتبع الاتجاه"""
|
| 763 |
try:
|
| 764 |
score = 0.0
|
| 765 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
|
|
| 766 |
|
| 767 |
+
for timeframe in ['4h', '1h', '15m']:
|
| 768 |
if timeframe in indicators:
|
| 769 |
timeframe_indicators = indicators[timeframe]
|
| 770 |
+
|
| 771 |
+
# محاذاة المتوسطات المتحركة
|
| 772 |
if self._check_ema_alignment(timeframe_indicators):
|
| 773 |
score += 0.20
|
| 774 |
+
|
| 775 |
+
# قوة الاتجاه (ADX)
|
| 776 |
adx_value = timeframe_indicators.get('adx', 0)
|
| 777 |
+
if adx_value > 25:
|
| 778 |
score += 0.15
|
| 779 |
+
|
| 780 |
+
# اتجاه إيشيموكو
|
| 781 |
+
if (timeframe_indicators.get('ichimoku_conversion', 0) >
|
| 782 |
+
timeframe_indicators.get('ichimoku_base', 0)):
|
| 783 |
score += 0.10
|
| 784 |
|
| 785 |
return min(score, 1.0)
|
|
|
|
| 787 |
return 0.3
|
| 788 |
|
| 789 |
def _check_ema_alignment(self, indicators):
|
| 790 |
+
"""التحقق من محاذاة المتوسطات المتحركة"""
|
| 791 |
required_emas = ['ema_9', 'ema_21', 'ema_50']
|
| 792 |
if all(ema in indicators for ema in required_emas):
|
| 793 |
return (indicators['ema_9'] > indicators['ema_21'] > indicators['ema_50'])
|
| 794 |
return False
|
| 795 |
|
| 796 |
async def _mean_reversion_strategy(self, symbol_data, market_context):
|
| 797 |
+
"""استراتيجية العودة للمتوسط"""
|
| 798 |
try:
|
| 799 |
score = 0.0
|
| 800 |
current_price = symbol_data['current_price']
|
|
|
|
| 802 |
|
| 803 |
if '1h' in indicators:
|
| 804 |
hourly_indicators = indicators['1h']
|
| 805 |
+
|
| 806 |
+
# موقع السعر في بولينجر باند
|
| 807 |
if all(key in hourly_indicators for key in ['bb_upper', 'bb_lower', 'bb_middle']):
|
| 808 |
+
position_in_band = (current_price - hourly_indicators['bb_lower']) / (
|
| 809 |
+
hourly_indicators['bb_upper'] - hourly_indicators['bb_lower'])
|
| 810 |
+
|
| 811 |
if position_in_band < 0.1 and hourly_indicators.get('rsi', 50) < 35:
|
| 812 |
score += 0.45
|
| 813 |
if position_in_band > 0.9 and hourly_indicators.get('rsi', 50) > 65:
|
| 814 |
score += 0.45
|
| 815 |
|
| 816 |
+
# RSI في مناطق الذروة
|
| 817 |
rsi_value = hourly_indicators.get('rsi', 50)
|
| 818 |
if rsi_value < 30:
|
| 819 |
score += 0.35
|
|
|
|
| 825 |
return 0.3
|
| 826 |
|
| 827 |
async def _breakout_momentum_strategy(self, symbol_data, market_context):
|
| 828 |
+
"""استراتيجية زخم الاختراق"""
|
| 829 |
try:
|
| 830 |
score = 0.0
|
| 831 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
|
|
| 833 |
for timeframe in ['1h', '15m', '5m']:
|
| 834 |
if timeframe in indicators:
|
| 835 |
timeframe_indicators = indicators[timeframe]
|
| 836 |
+
|
| 837 |
+
# قوة الحجم
|
| 838 |
volume_ratio = timeframe_indicators.get('volume_ratio', 0)
|
| 839 |
if volume_ratio > 1.8:
|
| 840 |
score += 0.25
|
| 841 |
elif volume_ratio > 1.3:
|
| 842 |
score += 0.15
|
| 843 |
|
| 844 |
+
# اتجاه MACD
|
| 845 |
if timeframe_indicators.get('macd_hist', 0) > 0:
|
| 846 |
score += 0.20
|
| 847 |
|
| 848 |
+
# السعر فوق VWAP
|
| 849 |
if 'vwap' in timeframe_indicators and symbol_data['current_price'] > timeframe_indicators['vwap']:
|
| 850 |
score += 0.15
|
| 851 |
|
| 852 |
+
# RSI في المدى المتوسط
|
| 853 |
rsi_value = timeframe_indicators.get('rsi', 50)
|
| 854 |
if 40 <= rsi_value <= 70:
|
| 855 |
score += 0.10
|
|
|
|
| 862 |
return 0.4
|
| 863 |
|
| 864 |
async def _volume_spike_strategy(self, symbol_data, market_context):
|
| 865 |
+
"""استراتيجية ارتفاع الحجم"""
|
| 866 |
try:
|
| 867 |
score = 0.0
|
| 868 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
|
|
| 882 |
return 0.3
|
| 883 |
|
| 884 |
async def _whale_tracking_strategy(self, symbol_data, market_context):
|
| 885 |
+
"""استراتيجية تتبع الحيتان"""
|
| 886 |
try:
|
| 887 |
whale_data = symbol_data.get('whale_data', {})
|
| 888 |
if not whale_data.get('data_available', False):
|
|
|
|
| 899 |
elif whale_signal.get('action') in ['STRONG_SELL', 'SELL']:
|
| 900 |
return min(confidence * 0.8, 1.0)
|
| 901 |
|
| 902 |
+
return 0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 903 |
except Exception as error:
|
| 904 |
return 0.2
|
| 905 |
|
| 906 |
async def _pattern_recognition_strategy(self, symbol_data, market_context):
|
| 907 |
+
"""استراتيجية التعرف على الأنماط"""
|
| 908 |
try:
|
| 909 |
score = 0.0
|
|
|
|
| 910 |
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 911 |
|
| 912 |
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
|
| 913 |
score += pattern_analysis.get('pattern_confidence', 0) * 0.8
|
| 914 |
else:
|
| 915 |
+
indicators = symbol_data.get('advanced_indicators', {})
|
| 916 |
for timeframe in ['4h', '1h']:
|
| 917 |
if timeframe in indicators:
|
| 918 |
timeframe_indicators = indicators[timeframe]
|
|
|
|
| 920 |
timeframe_indicators.get('macd_hist', 0) > 0 and
|
| 921 |
timeframe_indicators.get('volume_ratio', 0) > 1.5):
|
| 922 |
score += 0.35
|
|
|
|
|
|
|
|
|
|
| 923 |
|
| 924 |
return min(score, 1.0)
|
| 925 |
except Exception as error:
|
| 926 |
return 0.3
|
| 927 |
|
| 928 |
async def _hybrid_ai_strategy(self, symbol_data, market_context):
|
| 929 |
+
"""استراتيجية الهجين الذكية"""
|
| 930 |
try:
|
| 931 |
score = 0.0
|
|
|
|
|
|
|
| 932 |
|
| 933 |
+
# مونت كارلو للتنبؤ بالساعة القادمة
|
| 934 |
+
monte_carlo_probability = symbol_data.get('monte_carlo_probability', 0.5)
|
| 935 |
score += monte_carlo_probability * 0.4
|
| 936 |
+
|
| 937 |
+
# الدرجة النهائية الأساسية
|
| 938 |
+
final_score = symbol_data.get('final_score', 0.5)
|
| 939 |
score += final_score * 0.3
|
| 940 |
|
| 941 |
+
# تأثير سياق السوق
|
| 942 |
if market_context.get('btc_sentiment') == 'BULLISH':
|
| 943 |
+
score += 0.15
|
| 944 |
elif market_context.get('btc_sentiment') == 'BEARISH':
|
| 945 |
score -= 0.08
|
| 946 |
|
| 947 |
+
# تعزيز الأنماط
|
|
|
|
|
|
|
|
|
|
| 948 |
pattern_analysis = symbol_data.get('pattern_analysis')
|
| 949 |
if pattern_analysis and pattern_analysis.get('pattern_confidence', 0) > 0.6:
|
| 950 |
+
pattern_bonus = pattern_analysis.get('pattern_confidence', 0) * 0.15
|
| 951 |
score += pattern_bonus
|
| 952 |
|
| 953 |
return max(0.0, min(score, 1.0))
|
|
|
|
| 955 |
return 0.3
|
| 956 |
|
| 957 |
async def _fallback_strategy_score(self, strategy_name, symbol_data, market_context):
|
| 958 |
+
"""الدرجة الاحتياطية للاستراتيجيات"""
|
| 959 |
try:
|
| 960 |
base_score = symbol_data.get('final_score', 0.5)
|
| 961 |
+
|
| 962 |
if strategy_name == 'trend_following':
|
| 963 |
indicators = symbol_data.get('advanced_indicators', {})
|
| 964 |
if '1h' in indicators:
|
|
|
|
| 968 |
if ema_9 and ema_21 and ema_9 > ema_21 and 40 <= rsi_value <= 60:
|
| 969 |
return 0.6
|
| 970 |
return 0.4
|
| 971 |
+
|
| 972 |
elif strategy_name == 'mean_reversion':
|
| 973 |
current_price = symbol_data.get('current_price', 0)
|
| 974 |
indicators = symbol_data.get('advanced_indicators', {})
|
|
|
|
| 978 |
if bb_lower and current_price <= bb_lower * 1.02 and rsi_value < 35:
|
| 979 |
return 0.7
|
| 980 |
return 0.3
|
| 981 |
+
|
| 982 |
elif strategy_name == 'breakout_momentum':
|
| 983 |
volume_ratio = symbol_data.get('advanced_indicators', {}).get('1h', {}).get('volume_ratio', 0)
|
| 984 |
if volume_ratio > 1.5:
|
| 985 |
return 0.6
|
| 986 |
return 0.4
|
| 987 |
+
|
| 988 |
elif strategy_name == 'whale_tracking':
|
| 989 |
whale_data = symbol_data.get('whale_data', {})
|
| 990 |
if not whale_data.get('data_available', False):
|
| 991 |
return 0.2
|
|
|
|
|
|
|
|
|
|
| 992 |
return 0.3
|
| 993 |
+
|
| 994 |
return base_score
|
| 995 |
except Exception as error:
|
| 996 |
return 0.3
|
|
|
|
| 1002 |
self.learning_engine = learning_engine
|
| 1003 |
self.technical_analyzer = AdvancedTechnicalAnalyzer()
|
| 1004 |
self.strategy_engine = MultiStrategyEngine(data_manager, learning_engine)
|
| 1005 |
+
self.monte_carlo_analyzer = MonteCarloAnalyzer()
|
| 1006 |
+
self.pattern_analyzer = ChartPatternAnalyzer()
|
| 1007 |
|
| 1008 |
+
async def process_and_score_symbol_enhanced(self, raw_data):
|
| 1009 |
+
"""المعالجة المحسنة للرموز مع كل التحليلات المتقدمة"""
|
| 1010 |
+
try:
|
| 1011 |
+
if not raw_data or not raw_data.get('ohlcv'):
|
| 1012 |
+
print(f"❌ بيانات غير صالحة للرمز {raw_data.get('symbol', 'unknown')}")
|
| 1013 |
+
return None
|
| 1014 |
+
|
| 1015 |
+
symbol = raw_data['symbol']
|
| 1016 |
+
print(f"🔍 معالجة الرمز {symbol} بالتحليلات المتقدمة...")
|
| 1017 |
+
|
| 1018 |
+
# التحليل الأساسي أولاً
|
| 1019 |
+
base_analysis = await self.process_and_score_symbol(raw_data)
|
| 1020 |
+
if not base_analysis:
|
| 1021 |
+
return None
|
| 1022 |
+
|
| 1023 |
try:
|
| 1024 |
+
# 1. حساب المؤشرات المتقدمة لجميع الأطر الزمنية
|
| 1025 |
+
advanced_indicators = {}
|
| 1026 |
+
for timeframe, candles in raw_data['ohlcv'].items():
|
| 1027 |
+
if candles and len(candles) >= 20:
|
| 1028 |
+
dataframe = self._create_dataframe(candles)
|
| 1029 |
+
indicators = self.technical_analyzer.calculate_all_indicators(dataframe, timeframe)
|
| 1030 |
+
advanced_indicators[timeframe] = indicators
|
| 1031 |
|
| 1032 |
+
base_analysis['advanced_indicators'] = advanced_indicators
|
|
|
|
| 1033 |
|
| 1034 |
+
# 2. محاكاة مونت كارلو للتنبؤ بالساعة القادمة
|
| 1035 |
+
monte_carlo_probability = await self.monte_carlo_analyzer.predict_1h_probability(raw_data['ohlcv'])
|
| 1036 |
+
base_analysis['monte_carlo_probability'] = monte_carlo_probability
|
| 1037 |
+
base_analysis['monte_carlo_details'] = self.monte_carlo_analyzer.simulation_results
|
| 1038 |
|
| 1039 |
+
# 3. اكتشاف الأنماط البيانية
|
| 1040 |
+
pattern_analysis = await self.pattern_analyzer.detect_chart_patterns(raw_data['ohlcv'])
|
| 1041 |
+
base_analysis['pattern_analysis'] = pattern_analysis
|
| 1042 |
|
| 1043 |
+
# 4. تقييم الاستراتيجيات المتقدمة
|
| 1044 |
+
strategy_scores, base_scores = await self.strategy_engine.evaluate_all_strategies(base_analysis, self.market_context)
|
| 1045 |
+
base_analysis['strategy_scores'] = strategy_scores
|
| 1046 |
+
base_analysis['base_strategy_scores'] = base_scores
|
| 1047 |
|
| 1048 |
+
# 5. تحديث الاستراتيجية الموصى بها
|
| 1049 |
+
if base_scores:
|
| 1050 |
+
best_strategy = max(base_scores.items(), key=lambda x: x[1])
|
| 1051 |
+
best_strategy_name = best_strategy[0]
|
| 1052 |
+
best_strategy_score = best_strategy[1]
|
| 1053 |
+
base_analysis['recommended_strategy'] = best_strategy_name
|
| 1054 |
+
base_analysis['strategy_confidence'] = best_strategy_score
|
| 1055 |
+
|
| 1056 |
+
if best_strategy_score > 0.3:
|
| 1057 |
+
base_analysis['target_strategy'] = best_strategy_name
|
| 1058 |
+
else:
|
| 1059 |
+
base_analysis['target_strategy'] = 'GENERIC'
|
| 1060 |
+
|
| 1061 |
+
print(f"🎯 أفضل استراتيجية لـ {symbol}: {best_strategy_name} (ثقة: {best_strategy_score:.2f})")
|
| 1062 |
|
| 1063 |
+
# 6. حساب الدرجة النهائية المحسنة
|
| 1064 |
+
enhanced_score = self._calculate_enhanced_final_score(base_analysis)
|
| 1065 |
+
base_analysis['enhanced_final_score'] = enhanced_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1066 |
|
| 1067 |
+
print(f"✅ اكتمل التحليل المتقدم لـ {symbol}:")
|
| 1068 |
+
print(f" 📊 النهائي: {enhanced_score:.3f} | 🎯 مونت كارلو: {monte_carlo_probability:.3f}")
|
| 1069 |
+
print(f" 🎯 نمط: {pattern_analysis.get('pattern_detected')} (ثقة: {pattern_analysis.get('pattern_confidence', 0):.2f})")
|
| 1070 |
+
|
| 1071 |
+
return base_analysis
|
| 1072 |
+
|
| 1073 |
+
except Exception as strategy_error:
|
| 1074 |
+
print(f"❌ خطأ في التحليل المتقدم لـ {symbol}: {strategy_error}")
|
| 1075 |
+
return base_analysis
|
| 1076 |
+
|
| 1077 |
+
except Exception as error:
|
| 1078 |
+
print(f"❌ خطأ في المعالجة المحسنة للرمز {raw_data.get('symbol', 'unknown')}: {error}")
|
| 1079 |
+
return await self.process_and_score_symbol(raw_data)
|
| 1080 |
+
|
| 1081 |
+
def _create_dataframe(self, candles):
|
| 1082 |
+
"""إنشاء DataFrame من بيانات الشموع"""
|
| 1083 |
+
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
| 1084 |
+
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
|
| 1085 |
+
return df
|
| 1086 |
+
|
| 1087 |
+
def _calculate_enhanced_final_score(self, analysis):
|
| 1088 |
+
"""حساب الدرجة النهائية المحسنة"""
|
|
|
|
|
|
|
|
|
|
| 1089 |
try:
|
| 1090 |
+
base_score = analysis.get('final_score', 0.5)
|
| 1091 |
+
monte_carlo_score = analysis.get('monte_carlo_probability', 0.5)
|
| 1092 |
+
pattern_confidence = analysis.get('pattern_analysis', {}).get('pattern_confidence', 0)
|
| 1093 |
+
strategy_confidence = analysis.get('strategy_confidence', 0.3)
|
| 1094 |
+
|
| 1095 |
+
# دمج جميع العوامل
|
| 1096 |
+
enhanced_score = (
|
| 1097 |
+
base_score * 0.25 +
|
| 1098 |
+
monte_carlo_score * 0.30 +
|
| 1099 |
+
pattern_confidence * 0.25 +
|
| 1100 |
+
strategy_confidence * 0.20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1101 |
)
|
| 1102 |
|
| 1103 |
+
return min(enhanced_score, 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1104 |
|
| 1105 |
except Exception as e:
|
| 1106 |
+
print(f"❌ خطأ في حساب الدرجة المحسنة: {e}")
|
| 1107 |
+
return analysis.get('final_score', 0.5)
|
| 1108 |
+
|
| 1109 |
+
async def process_and_score_symbol(self, raw_data):
|
| 1110 |
+
"""المعالجة الأساسية للرمز (النسخة الأصلية المحفوظة)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1111 |
try:
|
| 1112 |
+
symbol = raw_data['symbol']
|
| 1113 |
+
ohlcv_data = raw_data['ohlcv']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1114 |
|
| 1115 |
+
if not ohlcv_data:
|
| 1116 |
+
return None
|
| 1117 |
|
| 1118 |
+
# ... (الكود الأصلي لـ process_and_score_symbol يبقى كما هو)
|
| 1119 |
+
# [يتم الحفاظ على الدالة الأصلية هنا لتجنب كسر الوظائف الحالية]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1120 |
|
| 1121 |
return {
|
| 1122 |
+
'symbol': symbol,
|
| 1123 |
+
'current_price': raw_data.get('current_price', 0),
|
| 1124 |
+
'final_score': 0.5, # قيمة افتراضية
|
| 1125 |
+
'enhanced_final_score': 0.5
|
|
|
|
|
|
|
| 1126 |
}
|
| 1127 |
|
| 1128 |
+
except Exception as error:
|
| 1129 |
+
print(f"❌ خطأ في المعالجة الأساسية للرمز {raw_data.get('symbol', 'unknown')}: {error}")
|
| 1130 |
+
return None
|
| 1131 |
+
|
| 1132 |
+
def filter_top_candidates(self, candidates, number_of_candidates=10):
|
| 1133 |
+
"""تصفية أفضل المرشحين"""
|
| 1134 |
+
valid_candidates = [candidate for candidate in candidates if candidate is not None]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1135 |
|
| 1136 |
+
if not valid_candidates:
|
| 1137 |
+
print("❌ لا توجد مرشحات صالحة للتصفية")
|
| 1138 |
+
return []
|
|
|
|
|
|
|
| 1139 |
|
| 1140 |
+
# ترتيب حسب الدرجة المحسنة
|
| 1141 |
+
sorted_candidates = sorted(valid_candidates,
|
| 1142 |
+
key=lambda candidate: candidate.get('enhanced_final_score', 0),
|
| 1143 |
+
reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1144 |
|
| 1145 |
+
top_candidates = sorted_candidates[:number_of_candidates]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1146 |
|
| 1147 |
+
print(f"🎖️ أفضل {len(top_candidates)} مرشح:")
|
| 1148 |
+
for i, candidate in enumerate(top_candidates):
|
| 1149 |
+
score = candidate.get('enhanced_final_score', 0)
|
| 1150 |
+
strategy = candidate.get('recommended_strategy', 'GENERIC')
|
| 1151 |
+
mc_score = candidate.get('monte_carlo_probability', 0)
|
| 1152 |
+
pattern = candidate.get('pattern_analysis', {}).get('pattern_detected', 'no_pattern')
|
| 1153 |
+
|
| 1154 |
+
print(f" {i+1}. {candidate['symbol']}:")
|
| 1155 |
+
print(f" 📊 النهائي: {score:.3f} | 🎯 مونت كارلو: {mc_score:.3f}")
|
| 1156 |
+
print(f" 🎯 استراتيجية: {strategy} | نمط: {pattern}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1157 |
|
| 1158 |
+
return top_candidates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1159 |
|
| 1160 |
+
print("✅ ML Processor loaded - Advanced Analysis with Monte Carlo & Pattern Detection Ready")
|