Update ml_engine/monte_carlo.py
Browse files- ml_engine/monte_carlo.py +20 -6
ml_engine/monte_carlo.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# ml_engine/monte_carlo.py
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
from arch import arch_model
|
|
@@ -12,7 +12,6 @@ except ImportError:
|
|
| 12 |
print("⚠️ مكتبة pandas_ta غير موجودة، سيتم استخدام حسابات يدوية للمؤشرات.")
|
| 13 |
ta = None
|
| 14 |
|
| 15 |
-
# 🔴 --- START OF CHANGE (FIX NumPy 2.0 Crash) --- 🔴
|
| 16 |
def _sanitize_results_for_json(results_dict):
|
| 17 |
"""
|
| 18 |
Recursively converts numpy types (ndarray, np.float64, etc.)
|
|
@@ -33,7 +32,6 @@ def _sanitize_results_for_json(results_dict):
|
|
| 33 |
return int(results_dict)
|
| 34 |
else:
|
| 35 |
return results_dict
|
| 36 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 37 |
|
| 38 |
|
| 39 |
class MonteCarloAnalyzer:
|
|
@@ -76,6 +74,14 @@ class MonteCarloAnalyzer:
|
|
| 76 |
mean_return = np.mean(log_returns)
|
| 77 |
std_return = np.std(log_returns)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
num_simulations = 5000
|
| 80 |
t_df = 10
|
| 81 |
jump_lambda = 0.05
|
|
@@ -155,9 +161,18 @@ class MonteCarloAnalyzer:
|
|
| 155 |
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
|
| 156 |
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
|
| 159 |
try:
|
| 160 |
-
# 🔴 --- START OF CHANGE (FIX GARCH Warning) --- 🔴
|
| 161 |
# (Rescale by 100, and set rescale=False to stop GARCH from auto-scaling)
|
| 162 |
garch_model = arch_model(log_returns_series * 100, vol='Garch', p=1, q=1, dist='t', rescale=False)
|
| 163 |
res = garch_model.fit(update_freq=0, disp='off')
|
|
@@ -165,9 +180,8 @@ class MonteCarloAnalyzer:
|
|
| 165 |
# (Divide by 100^2 = 10000)
|
| 166 |
forecasted_var = forecast.variance.iloc[-1, 0] / (100**2)
|
| 167 |
forecasted_std_return = np.sqrt(forecasted_var)
|
| 168 |
-
# 🔴 --- END OF CHANGE --- 🔴
|
| 169 |
except Exception as garch_err:
|
| 170 |
-
forecasted_std_return =
|
| 171 |
print(f"⚠️ GARCH failed, using std: {garch_err}")
|
| 172 |
|
| 173 |
|
|
|
|
| 1 |
+
# ml_engine/monte_carlo.py (Updated to V6.2 - Stablecoin Guard)
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
from arch import arch_model
|
|
|
|
| 12 |
print("⚠️ مكتبة pandas_ta غير موجودة، سيتم استخدام حسابات يدوية للمؤشرات.")
|
| 13 |
ta = None
|
| 14 |
|
|
|
|
| 15 |
def _sanitize_results_for_json(results_dict):
|
| 16 |
"""
|
| 17 |
Recursively converts numpy types (ndarray, np.float64, etc.)
|
|
|
|
| 32 |
return int(results_dict)
|
| 33 |
else:
|
| 34 |
return results_dict
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
class MonteCarloAnalyzer:
|
|
|
|
| 74 |
mean_return = np.mean(log_returns)
|
| 75 |
std_return = np.std(log_returns)
|
| 76 |
|
| 77 |
+
# 🔴 --- START OF CHANGE (V6.2 - STABLECOIN GUARD) --- 🔴
|
| 78 |
+
# واقي العملة المستقرة: إذا كان الانحراف المعياري (التقلب) شبه صفري، أوقف التحليل
|
| 79 |
+
if std_return < 1e-5: # (1e-5 هو 0.00001)
|
| 80 |
+
print(f" [MC Guard] {ohlcv_data.get('symbol', 'Symbol')} - Zero volatility detected. Stopping MC.")
|
| 81 |
+
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
|
| 82 |
+
return None
|
| 83 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 84 |
+
|
| 85 |
num_simulations = 5000
|
| 86 |
t_df = 10
|
| 87 |
jump_lambda = 0.05
|
|
|
|
| 161 |
df['log_returns'] = np.log(df['close'] / df['close'].shift(1)).fillna(0)
|
| 162 |
log_returns_series = df['log_returns'].replace([np.inf, -np.inf], 0)
|
| 163 |
|
| 164 |
+
# 🔴 --- START OF CHANGE (V6.2 - STABLECOIN GUARD) --- 🔴
|
| 165 |
+
# واقي العملة المستقرة: التحقق من التقلب قبل بدء التحليل
|
| 166 |
+
std_return_check = np.std(log_returns_series.iloc[-30:])
|
| 167 |
+
if std_return_check < 1e-5: # (1e-5 هو 0.00001)
|
| 168 |
+
print(f" [MC Guard Adv] {ohlcv_data.get('symbol', 'Symbol')} - Zero volatility detected. Stopping GARCH/LGBM.")
|
| 169 |
+
self.simulation_results = {'error': 'Zero volatility detected (Stablecoin?)'}
|
| 170 |
+
# العودة إلى المرحلة 1 (التي ستمسك بها أيضاً وترجع None)
|
| 171 |
+
return await self.generate_1h_price_distribution(ohlcv_data, target_profit_percent)
|
| 172 |
+
# 🔴 --- END OF CHANGE --- 🔴
|
| 173 |
+
|
| 174 |
# 3. (Phase 2) توقع التقلب باستخدام GARCH(1,1)
|
| 175 |
try:
|
|
|
|
| 176 |
# (Rescale by 100, and set rescale=False to stop GARCH from auto-scaling)
|
| 177 |
garch_model = arch_model(log_returns_series * 100, vol='Garch', p=1, q=1, dist='t', rescale=False)
|
| 178 |
res = garch_model.fit(update_freq=0, disp='off')
|
|
|
|
| 180 |
# (Divide by 100^2 = 10000)
|
| 181 |
forecasted_var = forecast.variance.iloc[-1, 0] / (100**2)
|
| 182 |
forecasted_std_return = np.sqrt(forecasted_var)
|
|
|
|
| 183 |
except Exception as garch_err:
|
| 184 |
+
forecasted_std_return = std_return_check # (استخدام القيمة التي تم التحقق منها)
|
| 185 |
print(f"⚠️ GARCH failed, using std: {garch_err}")
|
| 186 |
|
| 187 |
|