Spaces:
Runtime error
Runtime error
| import pandas_profiling as pp | |
| import pandas as pd | |
| import tensorflow as tf | |
| from datasets import load_dataset | |
| from tensorflow.python.framework import tensor_shape | |
| #LOINC | |
| datasetLOINC = load_dataset("awacke1/LOINC-CodeSet-Value-Description.csv", split="train") | |
| #SNOMED: | |
| datasetSNOMED = load_dataset("awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv", split="train") | |
| #eCQM: | |
| dataseteCQM = load_dataset("awacke1/eCQM-Code-Value-Semantic-Set.csv", split="train") | |
| # map using autotokenizer | |
| from transformers import AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
| dataset = datasetLOINC.map(lambda examples: tokenizer(examples["Description"]), batched=True) | |
| JSONOBJ2=dataset[0] | |
| print(JSONOBJ2) | |
| sw = datasetLOINC.filter(lambda example: example["Description"].startswith("Allergy")) | |
| len(sw) | |
| print(sw) | |
| print(datasetLOINC) | |
| print(datasetSNOMED) | |
| print(dataseteCQM) | |
| # play with some dataset tools before the show: | |
| #print(start_with_ar["Description"]) | |
| #--- | |
| #Main Stage - Begin! | |
| #--- | |
| import os | |
| import json | |
| import numpy as np | |
| import gradio as gr | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| CHOICES = ["SNOMED", "LOINC", "CQM"] | |
| JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}""" | |
| def profile_dataset(dataset=datasetSNOMED, username="awacke1", token=HF_TOKEN, dataset_name="awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv"): | |
| df = pd.read_csv(dataset.Description) | |
| if len(df.columns) <= 15: | |
| profile = pp.ProfileReport(df, title=f"{dataset_name} Report") | |
| else: | |
| profile = pp.ProfileReport(df, title=f"{dataset_name} Report", minimal = True) | |
| repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False) | |
| profile.to_file("./index.html") | |
| upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token) | |
| readme = f"---\ntitle: {dataset_name}\nemoji: β¨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---" | |
| with open("README.md", "w+") as f: | |
| f.write(readme) | |
| upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token) | |
| return f"Your dataset report will be ready at {repo_url}" | |
| #def lowercase_title(example): | |
| # return {"Description": example[title].lower()} | |
| # demonstrate map function of dataset | |
| #JSONOBJ_MAP=datasetLOINC.map(lowercase_title) | |
| #JSONOBJ_MAP=datasetLOINC.filter(lambda example: example["Description"].startswith("Mental health")) | |
| def concatenate_text(examples): | |
| return { | |
| "text": examples["Code"] | |
| + " \n " | |
| + examples["Description"] | |
| + " \n " | |
| + examples["Purpose: Clinical Focus"] | |
| } | |
| def cls_pooling(model_output): | |
| return model_output.last_hidden_state[:, 0] | |
| def get_embeddings(text_list): | |
| encoded_input = tokenizer( | |
| text_list, padding=True, truncation=True, return_tensors="tf" | |
| ) | |
| encoded_input = {k: v for k, v in encoded_input.items()} | |
| model_output = model(**encoded_input) | |
| return cls_pooling(model_output) | |
| def fn( text1, text2, num, slider1, slider2, single_checkbox, checkboxes, radio, dropdown, im1, im2, im3, im4, | |
| video, audio1, audio2, file, df1, df2,): | |
| #def fn( text1, text2, single_checkbox, checkboxes, radio, im4, file, df1, df2,): | |
| searchTerm = text1 | |
| searchTermSentence = text2 | |
| start_with_searchTermLOINC = datasetLOINC.filter(lambda example:example["Description"].startswith('Allergy')) #Allergy | |
| # FAISS | |
| columns = start_with_searchTermLOINC.column_names | |
| columns_to_keep = ["Value Set Name", "Code", "Description", "Purpose: Clinical Focus", "Code System OID"] | |
| columns_to_remove = set(columns_to_keep).symmetric_difference(columns) | |
| start_with_searchTermLOINC = start_with_searchTermLOINC.remove_columns(columns_to_remove) | |
| start_with_searchTermLOINC | |
| start_with_searchTermLOINC.set_format("pandas") | |
| df = start_with_searchTermLOINC[:] | |
| df["Purpose: Clinical Focus"][0] | |
| df4 = df.explode("Purpose: Clinical Focus", ignore_index=True) | |
| df4.head(4) | |
| from datasets import Dataset | |
| clinical_dataset = Dataset.from_pandas(df4) | |
| clinical_dataset | |
| clinical_dataset = clinical_dataset.map(lambda x: {"c_length": len(x["Description"].split())}) | |
| clinical_dataset = clinical_dataset.filter(lambda x: x["c_length"] > 15) | |
| clinical_dataset | |
| clinical_dataset = clinical_dataset.map(concatenate_text) | |
| #embedding = get_embeddings(clinical_dataset["text"][0]) | |
| #embedding.shape | |
| from transformers import AutoTokenizer, TFAutoModel | |
| model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1" | |
| tokenizer = AutoTokenizer.from_pretrained(model_ckpt) | |
| model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True) | |
| # TensorShape([1, 768]) | |
| tf.shape([1, 768]) | |
| embeddings_dataset = clinical_dataset.map( | |
| lambda x: {"embeddings": get_embeddings(x["text"]).numpy()[0]}) | |
| # embeddings_dataset.add_faiss_index(column="embeddings") | |
| # question = "How can I load a dataset offline?" | |
| # question_embedding = get_embeddings([question]).numpy() | |
| # question_embedding.shape | |
| # scores, samples = embeddings_dataset.get_nearest_examples("embeddings", question_embedding, k=5) | |
| # import pandas as pd | |
| # samples_df = pd.DataFrame.from_dict(samples) | |
| # samples_df["scores"] = scores | |
| # samples_df.sort_values("scores", ascending=False, inplace=True) | |
| # "text": examples["Code"] | |
| # + " \n " | |
| # + examples["Description"] | |
| # + " \n " | |
| # + examples["Purpose: Clinical Focus"] | |
| # for _, row in samples_df.iterrows(): | |
| # print(f"Code: {row.Code}") | |
| # print(f"Description: {row.Description}") | |
| # #print(f"Purpose: Clinical Focus: {row.Purpose: Clinical Focus}") | |
| # #print(f"URL: {row.html_url}") | |
| # print("=" * 50) | |
| # print() | |
| # SNOMED and CQM --------------- | |
| start_with_searchTermSNOMED = datasetSNOMED.filter(lambda example: example["Description"].startswith('Hospital')) #Hospital | |
| start_with_searchTermCQM = dataseteCQM.filter(lambda example: example["Description"].startswith('Telephone')) #Telephone | |
| print(start_with_searchTermLOINC ) | |
| print(start_with_searchTermSNOMED ) | |
| print(start_with_searchTermCQM) | |
| #print(start_with_searchTermLOINC["train"][0] ) | |
| #print(start_with_searchTermSNOMED["train"][0] ) | |
| #print(start_with_searchTermCQM["train"][0] ) | |
| #returnMsg=profile_dataset() | |
| #print(returnMsg) | |
| # try: | |
| #top1matchLOINC = json.loads(start_with_searchTermLOINC['train']) | |
| #top1matchSNOMED = json.loads(start_with_searchTermSNOMED['train']) | |
| #top1matchCQM = json.loads(start_with_searchTermCQM['train']) | |
| # top1matchLOINC = json.loads(start_with_searchTermLOINC) | |
| # top1matchSNOMED = json.loads(start_with_searchTermSNOMED) | |
| # top1matchCQM = json.loads(start_with_searchTermCQM) | |
| # except: | |
| # print('Hello') | |
| #print(start_with_searchTermLOINC[0]) | |
| #print(start_with_searchTermSNOMED[0] ) | |
| #print(start_with_searchTermCQM[0] ) | |
| #print(returnMsg) | |
| # print("Datasets Processed") | |
| return ( | |
| (text1 if single_checkbox else text2) | |
| + ", selected:" | |
| + ", ".join(checkboxes), # Text | |
| { | |
| "positive": num / (num + slider1 + slider2), | |
| "negative": slider1 / (num + slider1 + slider2), | |
| "neutral": slider2 / (num + slider1 + slider2), | |
| }, # Label | |
| (audio1[0], np.flipud(audio1[1])) | |
| if audio1 is not None else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio | |
| np.flipud(im1) | |
| if im1 is not None else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image | |
| video | |
| if video is not None else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video | |
| [ | |
| ("The", "art"), | |
| ("quick brown", "adj"), | |
| ("fox", "nn"), | |
| ("jumped", "vrb"), | |
| ("testing testing testing", None), | |
| ("over", "prp"), | |
| ("the", "art"), | |
| ("testing", None), | |
| ("lazy", "adj"), | |
| ("dogs", "nn"), | |
| (".", "punc"), | |
| ] + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText | |
| [ | |
| ("The testing testing testing", None), | |
| ("over", 0.6), | |
| ("the", 0.2), | |
| ("testing", None), | |
| ("lazy", -0.1), | |
| ("dogs", 0.4), | |
| (".", 0), | |
| ] + [(f"test", x / 10) for x in range(-10, 10)], # HighlightedText | |
| #json.loads(JSONOBJ), # JSON | |
| start_with_searchTermLOINC.to_json(orient="records", path_or_buf="None"), | |
| #json.dumps(json.loads(start_with_searchTermLOINC['train'].to_json(orient="records", path_or_buf="None"))), | |
| "<button style='background-color: red'>Click Me: " + radio + "</button>", # HTML | |
| os.path.join(os.path.dirname(__file__), "files/titanic.csv"), | |
| df1, # Dataframe | |
| np.random.randint(0, 10, (4, 4)), # Dataframe | |
| df2, # Timeseries | |
| ) | |
| demo = gr.Interface( | |
| fn, | |
| inputs=[ | |
| gr.Textbox(value="Allergy", label="Textbox"), | |
| gr.Textbox(lines=3, value="Bathing", placeholder="Type here..", label="Textbox 2"), | |
| gr.Number(label="Number", value=42), | |
| gr.Slider(10, 20, value=15, label="Slider: 10 - 20"), | |
| gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"), | |
| gr.Checkbox(label="Check for NER Match on Submit"), | |
| gr.CheckboxGroup(label="Clinical Terminology to Check", choices=CHOICES, value=CHOICES[0:2]), | |
| gr.Radio(label="Preferred Terminology Output", choices=CHOICES, value=CHOICES[2]), | |
| gr.Dropdown(label="Dropdown", choices=CHOICES), | |
| gr.Image(label="Image"), | |
| gr.Image(label="Image w/ Cropper", tool="select"), | |
| gr.Image(label="Sketchpad", source="canvas"), | |
| gr.Image(label="Webcam", source="webcam"), | |
| gr.Video(label="Video"), | |
| gr.Audio(label="Audio"), | |
| gr.Audio(label="Microphone", source="microphone"), | |
| gr.File(label="File"), | |
| gr.Dataframe(label="Filters", headers=["Name", "Age", "Gender"]), | |
| gr.Timeseries(x="time", y=["price", "value"], colors=["pink", "purple"]), | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Textbox"), | |
| gr.Label(label="Label"), | |
| gr.Audio(label="Audio"), | |
| gr.Image(label="Image"), | |
| gr.Video(label="Video"), | |
| gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}), | |
| gr.HighlightedText(label="HighlightedText", show_legend=True), | |
| gr.JSON(label="JSON"), | |
| gr.HTML(label="HTML"), | |
| gr.File(label="File"), | |
| gr.Dataframe(label="Dataframe"), | |
| gr.Dataframe(label="Numpy"), | |
| gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"), | |
| ], | |
| examples=[ | |
| [ | |
| "Allergy", | |
| "Admission", | |
| 10, | |
| 12, | |
| 4, | |
| True, | |
| ["SNOMED", "LOINC", "CQM"], | |
| "SNOMED", | |
| "bar", | |
| os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), | |
| os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), | |
| os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), | |
| os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), | |
| os.path.join(os.path.dirname(__file__), "files/world.mp4"), | |
| os.path.join(os.path.dirname(__file__), "files/cantina.wav"), | |
| os.path.join(os.path.dirname(__file__), "files/cantina.wav"), | |
| os.path.join(os.path.dirname(__file__), "files/titanic.csv"), | |
| [[1, 2, 3], [3, 4, 5]], | |
| os.path.join(os.path.dirname(__file__), "files/time.csv"), | |
| ] | |
| ] | |
| * 3, | |
| theme="default", | |
| title="βοΈπ§ π¬π§¬ Clinical Terminology Auto Mapper AI π©ββοΈπ©ΊβοΈπ", | |
| cache_examples=False, | |
| description="Clinical Terminology Auto Mapper AI", | |
| article="Learn more at [Yggdrasil](https://github.com/AaronCWacker/Yggdrasil)", | |
| # live=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) |