Spaces:
Running
Running
| from typing import List, Tuple, Optional | |
| import google.generativeai as genai | |
| import gradio as gr | |
| from PIL import Image | |
| TITLE = """<h1 align="center">Gemini Playground 💬</h1>""" | |
| SUBTITLE = """<h2 align="center">Play with Gemini Pro and Gemini Pro Vision API</h2>""" | |
| DUPLICATE = """ | |
| <div style="text-align: center; display: flex; justify-content: center; align-items: center;"> | |
| <a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true"> | |
| <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;"> | |
| </a> | |
| <span>Duplicate the Space and run securely with your | |
| <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>. | |
| </span> | |
| </div> | |
| """ | |
| print("google-generativeai:", genai.__version__) | |
| def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: | |
| if not stop_sequences: | |
| return None | |
| return [sequence.strip() for sequence in stop_sequences.split(",")] | |
| def predict( | |
| google_key: str, | |
| text_prompt: str, | |
| image_prompt: Optional[Image.Image], | |
| temperature: float, | |
| max_output_tokens: int, | |
| stop_sequences: str, | |
| top_k: int, | |
| top_p: float, | |
| chatbot: List[Tuple[str, str]] | |
| ) -> Tuple[str, List[Tuple[str, str]]]: | |
| if not google_key: | |
| raise ValueError( | |
| "GOOGLE_API_KEY is not set. " | |
| "Please follow the instructions in the README to set it up.") | |
| genai.configure(api_key=google_key) | |
| generation_config = genai.types.GenerationConfig( | |
| temperature=temperature, | |
| max_output_tokens=max_output_tokens, | |
| stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences), | |
| top_k=top_k, | |
| top_p=top_p) | |
| if image_prompt is None: | |
| model = genai.GenerativeModel('gemini-pro') | |
| response = model.generate_content( | |
| text_prompt, | |
| stream=True, | |
| generation_config=generation_config) | |
| response.resolve() | |
| else: | |
| model = genai.GenerativeModel('gemini-pro-vision') | |
| response = model.generate_content( | |
| [text_prompt, image_prompt], | |
| stream=True, | |
| generation_config=generation_config) | |
| response.resolve() | |
| chatbot.append((text_prompt, response.text)) | |
| return "", chatbot | |
| google_key_component = gr.Textbox( | |
| label="GOOGLE API KEY", | |
| value="", | |
| type="password", | |
| placeholder="...", | |
| info="You have to provide your own GOOGLE_API_KEY for this app to function properly", | |
| ) | |
| image_prompt_component = gr.Image(type="pil", label="Image", scale=1) | |
| chatbot_component = gr.Chatbot(label='Gemini', scale=2) | |
| text_prompt_component = gr.Textbox( | |
| placeholder="Hi there!", | |
| label="Ask me anything and press Enter" | |
| ) | |
| run_button_component = gr.Button() | |
| temperature_component = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| value=0.4, | |
| step=0.05, | |
| label="Temperature", | |
| info=( | |
| "Temperature controls the degree of randomness in token selection. Lower " | |
| "temperatures are good for prompts that expect a true or correct response, " | |
| "while higher temperatures can lead to more diverse or unexpected results. " | |
| )) | |
| max_output_tokens_component = gr.Slider( | |
| minimum=1, | |
| maximum=2048, | |
| value=1024, | |
| step=1, | |
| label="Token limit", | |
| info=( | |
| "Token limit determines the maximum amount of text output from one prompt. A " | |
| "token is approximately four characters. The default value is 2048." | |
| )) | |
| stop_sequences_component = gr.Textbox( | |
| label="Add stop sequence", | |
| value="", | |
| type="text", | |
| placeholder="STOP, END", | |
| info=( | |
| "A stop sequence is a series of characters (including spaces) that stops " | |
| "response generation if the model encounters it. The sequence is not included " | |
| "as part of the response. You can add up to five stop sequences." | |
| )) | |
| top_k_component = gr.Slider( | |
| minimum=1, | |
| maximum=40, | |
| value=32, | |
| step=1, | |
| label="Top-K", | |
| info=( | |
| "Top-k changes how the model selects tokens for output. A top-k of 1 means the " | |
| "selected token is the most probable among all tokens in the model’s " | |
| "vocabulary (also called greedy decoding), while a top-k of 3 means that the " | |
| "next token is selected from among the 3 most probable tokens (using " | |
| "temperature)." | |
| )) | |
| top_p_component = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=1, | |
| step=0.01, | |
| label="Top-P", | |
| info=( | |
| "Top-p changes how the model selects tokens for output. Tokens are selected " | |
| "from most probable to least until the sum of their probabilities equals the " | |
| "top-p value. For example, if tokens A, B, and C have a probability of .3, .2, " | |
| "and .1 and the top-p value is .5, then the model will select either A or B as " | |
| "the next token (using temperature). " | |
| )) | |
| inputs = [ | |
| google_key_component, | |
| text_prompt_component, | |
| image_prompt_component, | |
| temperature_component, | |
| max_output_tokens_component, | |
| stop_sequences_component, | |
| top_k_component, | |
| top_p_component, | |
| chatbot_component | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(SUBTITLE) | |
| gr.HTML(DUPLICATE) | |
| with gr.Column(): | |
| google_key_component.render() | |
| with gr.Row(): | |
| image_prompt_component.render() | |
| chatbot_component.render() | |
| text_prompt_component.render() | |
| run_button_component.render() | |
| with gr.Accordion("Parameters", open=False): | |
| temperature_component.render() | |
| max_output_tokens_component.render() | |
| stop_sequences_component.render() | |
| with gr.Accordion("Advanced", open=False): | |
| top_k_component.render() | |
| top_p_component.render() | |
| run_button_component.click( | |
| fn=predict, | |
| inputs=inputs, | |
| outputs=[text_prompt_component, chatbot_component], | |
| ) | |
| text_prompt_component.submit( | |
| fn=predict, | |
| inputs=inputs, | |
| outputs=[text_prompt_component, chatbot_component], | |
| ) | |
| demo.queue(max_size=99).launch(debug=True) | |