Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import mne | |
| import numpy as np | |
| import pandas as pd | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import os | |
| # Load an open-source LLM model with no additional training | |
| model_name = "tiiuae/falcon-7b-instruct" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16, | |
| device_map="auto" # Automatically selects CPU/GPU if available | |
| ) | |
| def compute_band_power(psd, freqs, fmin, fmax): | |
| """Compute mean band power in the given frequency range.""" | |
| freq_mask = (freqs >= fmin) & (freqs <= fmax) | |
| # Take the mean across channels and frequencies | |
| band_psd = psd[:, freq_mask].mean() | |
| return float(band_psd) | |
| def load_eeg_data(file_path): | |
| """ | |
| Load EEG data from a file. | |
| If FIF file is detected, use MNE's read_raw_fif. | |
| If CSV file is detected, load via pandas and create a RawArray. | |
| """ | |
| _, file_ext = os.path.splitext(file_path) | |
| file_ext = file_ext.lower() | |
| if file_ext == '.fif': | |
| raw = mne.io.read_raw_fif(file_path, preload=True) | |
| elif file_ext == '.csv': | |
| # Assume first column is 'time', and subsequent columns are channels | |
| df = pd.read_csv(file_path) | |
| if 'time' not in df.columns: | |
| raise ValueError("CSV must contain a 'time' column for timestamps.") | |
| time = df['time'].values | |
| data = df.drop(columns=['time']).values.T # shape: (n_channels, n_samples) | |
| # Estimate sampling frequency from time vector (assuming uniform) | |
| # This is a simplistic approach: we take 1 / average time step. | |
| # Make sure time is in seconds | |
| if len(time) < 2: | |
| raise ValueError("Not enough time points in CSV.") | |
| sfreq = 1.0 / np.mean(np.diff(time)) | |
| # Create MNE Info | |
| ch_names = list(df.columns) | |
| ch_names.remove('time') | |
| ch_types = ['eeg'] * len(ch_names) | |
| info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) | |
| raw = mne.io.RawArray(data, info) | |
| else: | |
| raise ValueError("Unsupported file format. Please provide a FIF or CSV file.") | |
| return raw | |
| def process_eeg(file): | |
| # Load EEG data | |
| raw = load_eeg_data(file.name) | |
| # Compute PSD (Power Spectral Density) between 1 and 40 Hz | |
| psd, freqs = mne.time_frequency.psd_welch(raw, fmin=1, fmax=40) | |
| # Compute simple band powers | |
| alpha_power = compute_band_power(psd, freqs, 8, 12) | |
| beta_power = compute_band_power(psd, freqs, 13, 30) | |
| # Create a short summary of the extracted features | |
| data_summary = ( | |
| f"Alpha power: {alpha_power:.3f}, Beta power: {beta_power:.3f}. " | |
| f"The EEG shows stable alpha rhythms and slightly elevated beta activity." | |
| ) | |
| # Prepare the prompt for the language model | |
| prompt = f"""You are a neuroscientist analyzing EEG features. | |
| Data Summary: {data_summary} | |
| Provide a concise, user-friendly interpretation of these findings in simple terms. | |
| """ | |
| # Generate the summary using the LLM | |
| inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate( | |
| inputs, max_length=200, do_sample=True, top_k=50, top_p=0.95 | |
| ) | |
| summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return summary | |
| iface = gr.Interface( | |
| fn=process_eeg, | |
| inputs=gr.File(label="Upload your EEG data (FIF or CSV)"), | |
| outputs="text", | |
| title="NeuroNarrative-Lite: EEG Summary", | |
| description=("Upload EEG data in FIF (MNE native) or CSV format. " | |
| "The system extracts basic EEG features and generates " | |
| "a human-readable summary using an open-source language model.") | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |