File size: 16,716 Bytes
40fe9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
# scopus_simple_extract.py
# Extrae resultados Scopus por AF-ID y exporta UN CSV "amigable" con campos básicos.
# NO pide Abstract, Autores, Keywords, Funding, Conference, etc.
import time
import argparse
import urllib.parse as urlparse
from typing import Dict, List, Optional
import requests
import numpy as np
import pandas as pd
BASE_URL_SEARCH = "https://api.elsevier.com/content/search/scopus"
# -------------------------
# HTTP utilidades
# -------------------------
def build_headers(api_key: str, insttoken: Optional[str] = None) -> Dict[str, str]:
h = {"Accept": "application/json", "X-ELS-APIKey": api_key.strip()}
if insttoken:
h["X-ELS-Insttoken"] = insttoken.strip()
return h
def get_json(session: requests.Session, url: str, params: Dict[str, str],
headers: Dict[str, str], max_retries: int = 6, sleep_base: float = 0.75) -> Dict:
"""
GET con reintentos para 429/5xx. Si 401 por Insttoken mal pareado, reintenta SIN Insttoken.
"""
last_exc = None
tried_without_token = False
for t in range(max_retries + 1):
try:
r = session.get(url, params=params, headers=headers, timeout=90)
except Exception as ex:
last_exc = ex
time.sleep((2 ** t) * sleep_base)
continue
if r.status_code in (429, 500, 502, 503, 504):
time.sleep((2 ** t) * sleep_base)
continue
if r.status_code == 401:
# intentar una sola vez sin Insttoken si el problema es token no asociado
try:
j = r.json()
except Exception:
j = {}
if ("Institution Token is not associated with API Key" in str(j)
and not tried_without_token
and "X-ELS-Insttoken" in headers):
tried_without_token = True
h2 = dict(headers)
h2.pop("X-ELS-Insttoken", None)
r2 = session.get(url, params=params, headers=h2, timeout=90)
if r2.ok:
try:
return r2.json()
except Exception:
raise RuntimeError("La respuesta no es JSON decodificable.")
else:
try:
j2 = r2.json()
except Exception:
j2 = {}
raise RuntimeError(f"HTTP {r2.status_code} – {j2 or r2.text}")
if not r.ok:
try:
j = r.json()
except Exception:
j = {}
raise RuntimeError(f"HTTP {r.status_code} – {j or r.text}")
try:
return r.json()
except Exception:
raise RuntimeError("La respuesta no es JSON decodificable.")
if last_exc:
raise RuntimeError(f"Error de red persistente: {last_exc}")
raise RuntimeError("No se obtuvo respuesta estable tras varios reintentos.")
# -------------------------
# Paginación Search API
# -------------------------
def extract_by_year_cursor(session: requests.Session, headers: Dict[str, str],
afid: str, year: int, page_size: int, view: str) -> List[Dict]:
params = {
"query": f"AF-ID({afid}) AND PUBYEAR = {year}",
"view": view,
"count": str(page_size),
"cursor": "*",
}
entries: List[Dict] = []
while True:
j = get_json(session, BASE_URL_SEARCH, params, headers)
chunk = j.get("search-results", {}).get("entry", []) or []
if chunk:
entries.extend(chunk)
next_token = None
for ln in j.get("search-results", {}).get("link", []) or []:
if ln.get("@ref") == "next":
href = ln.get("@href")
if href:
q = urlparse.urlparse(href).query
qd = urlparse.parse_qs(q)
next_token = (qd.get("cursor") or [None])[0]
break
if not next_token:
break
params["cursor"] = next_token
return entries
def extract_by_year_startcount(session: requests.Session, headers: Dict[str, str],
afid: str, year: int, page_size: int, view: str,
hard_limit: int = 20000) -> List[Dict]:
entries: List[Dict] = []
start = 0
while start < hard_limit:
params = {
"query": f"AF-ID({afid}) AND PUBYEAR = {year}",
"view": view,
"count": str(page_size),
"start": str(start),
}
j = get_json(session, BASE_URL_SEARCH, params, headers)
chunk = j.get("search-results", {}).get("entry", []) or []
if not chunk:
break
entries.extend(chunk)
if len(chunk) < page_size:
break
start += page_size
return entries
def extract_no_year(session: requests.Session, headers: Dict[str, str],
afid: str, page_size: int, view: str, use_cursor: bool) -> List[Dict]:
entries: List[Dict] = []
if use_cursor:
params = {"query": f"AF-ID({afid})", "view": view, "count": str(page_size), "cursor": "*"}
while True:
j = get_json(session, BASE_URL_SEARCH, params, headers)
chunk = j.get("search-results", {}).get("entry", []) or []
if chunk:
entries.extend(chunk)
next_token = None
for ln in j.get("search-results", {}).get("link", []) or []:
if ln.get("@ref") == "next":
href = ln.get("@href")
if href:
q = urlparse.urlparse(href).query
qd = urlparse.parse_qs(q)
next_token = (qd.get("cursor") or [None])[0]
break
if not next_token:
break
params["cursor"] = next_token
else:
start = 0
while True:
params_sc = {"query": f"AF-ID({afid})", "view": view, "count": str(page_size), "start": str(start)}
j = get_json(session, BASE_URL_SEARCH, params_sc, headers)
chunk = j.get("search-results", {}).get("entry", []) or []
if not chunk:
break
entries.extend(chunk)
if len(chunk) < page_size:
break
start += page_size
return entries
# -------------------------
# Normalización básica (sin autores/abstract/keywords/funding/etc.)
# -------------------------
TOP_FIELD_MAP = {
"dc:title": "title",
# NO pedimos abstract ni keywords
"prism:coverDate": "coverDate",
"prism:doi": "doi",
"prism:publicationName": "sourceTitle",
"prism:issn": "issn",
"prism:eIssn": "eIssn",
"prism:volume": "volume",
"prism:issueIdentifier": "issue",
"prism:pageRange": "pages",
"citedby-count": "citedBy",
"subtype": "subtype",
"subtypeDescription": "subtypeDesc",
"openaccessFlag": "openAccess",
"dc:identifier": "identifier",
"eid": "eid",
"prism:url": "prismUrl",
}
def links_to_dict(links: List[Dict]) -> Dict[str, str]:
d = {}
for ln in links or []:
ref = ln.get("@ref")
href = ln.get("@href")
if ref and href:
d[f"link_{ref}"] = href
return d
def normalize_entries(entries: List[Dict]) -> pd.DataFrame:
rows: List[Dict] = []
for e in entries:
row = {}
for k_src, k_dst in TOP_FIELD_MAP.items():
if k_src in e:
row[k_dst] = e.get(k_src)
row.update(links_to_dict(e.get("link")))
rows.append(row)
df = pd.DataFrame(rows)
if not df.empty:
if "coverDate" in df.columns:
df["coverDate"] = pd.to_datetime(df["coverDate"], errors="coerce")
subset_cols = [c for c in ["eid", "identifier"] if c in df.columns]
if subset_cols:
df = df.drop_duplicates(subset=subset_cols, keep="first")
return df
# -------------------------
# Fallbacks de vista/paginación
# -------------------------
def try_extract_year(session, headers, afid, year, page_size, view, use_cursor) -> List[Dict]:
def do_extract(ps, cur, v):
if cur:
return extract_by_year_cursor(session, headers, afid, year, ps, v)
else:
return extract_by_year_startcount(session, headers, afid, year, ps, v)
try:
return do_extract(page_size, use_cursor, view)
except RuntimeError as e:
msg = str(e)
if "AUTHORIZATION_ERROR" in msg:
fallback = "STANDARD" if view == "COMPLETE" else ("BASIC" if view == "STANDARD" else None)
if fallback:
return do_extract(page_size, use_cursor, fallback)
raise
if "INVALID_INPUT" in msg and "maximum number allowed for the service level" in msg:
# reduce page size y quita cursor
return do_extract(25, False, view)
if use_cursor:
return do_extract(page_size, False, view)
raise
def try_extract_no_year(session, headers, afid, page_size, view, use_cursor) -> List[Dict]:
try:
return extract_no_year(session, headers, afid, page_size, view, use_cursor)
except RuntimeError as e:
msg = str(e)
if "AUTHORIZATION_ERROR" in msg:
if view == "COMPLETE": # bajar a STANDARD/BASIC
return extract_no_year(session, headers, afid, page_size, "STANDARD", use_cursor)
if view == "STANDARD":
return extract_no_year(session, headers, afid, page_size, "BASIC", use_cursor)
raise
if "INVALID_INPUT" in msg and "maximum number allowed for the service level" in msg:
return extract_no_year(session, headers, afid, 25, view, False)
if use_cursor:
return extract_no_year(session, headers, afid, page_size, view, False)
raise
def fetch_scopus_affiliation(api_key: str,
afid: str = "60077378",
year_start: Optional[int] = 2020,
year_end: Optional[int] = 2024,
view: str = "STANDARD",
page_size: int = 100,
insttoken: Optional[str] = None,
use_cursor: bool = True) -> List[Dict]:
headers = build_headers(api_key, insttoken)
session = requests.Session()
if year_start is None or year_end is None:
return try_extract_no_year(session, headers, afid, page_size, view, use_cursor)
entries: List[Dict] = []
for yr in range(int(year_start), int(year_end) + 1):
entries.extend(try_extract_year(session, headers, afid, yr, page_size, view, use_cursor))
return entries
# -------------------------
# Export UN SOLO CSV (ligero)
# -------------------------
EXPORT_COLUMNS = [
"Title","Year","Source title","Volume","Issue",
"Page start","Page end","Page count",
"Cited by","DOI","Link","ISSN","eISSN","Document Type","Open Access","EID"
]
def _pick_link(row: pd.Series) -> str:
for c in ("prismUrl","link_scopus","prism:url","link_self"):
if c in row and pd.notna(row[c]) and str(row[c]).strip():
return str(row[c])
return ""
def pick_col(df: pd.DataFrame, primary: str, secondary: str, default: str = "") -> pd.Series:
"""Fallback por fila: usa primary; si está vacío/NaN, toma secondary."""
n = len(df)
s1 = df[primary] if primary in df.columns else pd.Series([np.nan] * n, index=df.index)
s2 = df[secondary] if secondary in df.columns else pd.Series([default] * n, index=df.index)
s1 = s1.copy()
mask = s1.isna() | (s1.astype(str).str.strip() == "")
s1.loc[mask] = s2.loc[mask]
return s1.fillna(default)
def make_export(df: pd.DataFrame) -> pd.DataFrame:
# Derivar Year y páginas
out = df.copy()
if "coverDate" in out.columns:
out["Year"] = pd.to_datetime(out["coverDate"], errors="coerce").dt.year
else:
out["Year"] = ""
out["Page start"], out["Page end"], out["Page count"] = "", "", ""
if "pages" in out.columns:
starts, ends, counts = [], [], []
for x in out["pages"].fillna(""):
if "-" in x:
a, b = x.split("-", 1)
a_num = "".join(ch for ch in a if ch.isdigit())
b_num = "".join(ch for ch in b if ch.isdigit())
starts.append(a_num); ends.append(b_num)
try:
counts.append(str(max(0, int(b_num) - int(a_num) + 1)) if a_num and b_num else "")
except Exception:
counts.append("")
else:
starts.append(""); ends.append(""); counts.append("")
out["Page start"], out["Page end"], out["Page count"] = starts, ends, counts
# Link preferido
out["Link"] = out.apply(_pick_link, axis=1)
# Ensamblar columnas finales (usando pick_col para evitar 'Series' ambiguas)
final = pd.DataFrame()
final["Title"] = out.get("title", "")
final["Year"] = out.get("Year", "")
final["Source title"] = pick_col(out, "sourceTitle", "prism:publicationName")
final["Volume"] = pick_col(out, "volume", "prism:volume")
final["Issue"] = pick_col(out, "issue", "prism:issueIdentifier")
final["Page start"] = out["Page start"]
final["Page end"] = out["Page end"]
final["Page count"] = out["Page count"]
final["Cited by"] = pick_col(out, "citedBy", "citedby-count")
final["DOI"] = pick_col(out, "doi", "prism:doi")
final["Link"] = out["Link"]
final["ISSN"] = pick_col(out, "issn", "prism:issn")
final["eISSN"] = pick_col(out, "eIssn", "prism:eIssn")
final["Document Type"] = pick_col(out, "subtypeDesc", "subtypeDescription")
final["Open Access"] = pick_col(out, "openAccess", "openaccessFlag")
final["EID"] = out.get("eid", "")
# Ordenar por año descendente (coaccionando a numérico para evitar mezclas str/int)
final["Year"] = pd.to_numeric(final["Year"], errors="coerce")
final = final.sort_values(by="Year", ascending=False, na_position="last")
# Reordenar/filtrar columnas
return final[EXPORT_COLUMNS]
# -------------------------
# CLI
# -------------------------
def parse_args():
p = argparse.ArgumentParser(description="Extrae publicaciones Scopus por AF-ID y exporta UN CSV básico (sin autores/abstract/etc.).")
p.add_argument("--api-key", required=True, help="X-ELS-APIKey")
p.add_argument("--insttoken", default=None, help="X-ELS-Insttoken (opcional)")
p.add_argument("--afid", default="60077378", help="Scopus Affiliation ID (AF-ID)")
p.add_argument("--year-start", default=2020, help="Año inicial o 'None'")
p.add_argument("--year-end", default=2024, help="Año final o 'None'")
p.add_argument("--view", default="STANDARD", choices=["BASIC", "STANDARD", "COMPLETE"], help="Vista del Search API")
p.add_argument("--page-size", type=int, default=100, help="Tamaño de página (25..200)")
p.add_argument("--use-cursor", action="store_true", help="Usar cursor pagination")
p.add_argument("--no-cursor", dest="use_cursor", action="store_false", help="Usar start/count")
p.set_defaults(use_cursor=True)
p.add_argument("--out-prefix", default="scopus_afid", help="Prefijo de salida")
return p.parse_args()
def main():
args = parse_args()
def norm_year(x):
sx = str(x).strip().lower()
return None if sx == "none" else int(x)
y0 = norm_year(args.year_start)
y1 = norm_year(args.year_end)
print("Descargando desde Scopus (Search API)…")
entries = fetch_scopus_affiliation(
api_key=args.api_key,
afid=args.afid,
year_start=y0,
year_end=y1,
view=args.view,
page_size=args.page_size,
insttoken=args.insttoken,
use_cursor=args.use_cursor
)
print(f"Entradas obtenidas: {len(entries)}")
df = normalize_entries(entries)
export_df = make_export(df)
out_csv = f"{args.out_prefix}_scopus_export.csv"
export_df.to_csv(out_csv, index=False, encoding="utf-8-sig")
print(f"Listo: {out_csv}")
if __name__ == "__main__":
main()
|