Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import (
|
| 2 |
+
PaliGemmaProcessor,
|
| 3 |
+
PaliGemmaForConditionalGeneration,
|
| 4 |
+
)
|
| 5 |
+
from transformers.image_utils import load_image
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
model_id = "google/paligemma2-3b-pt-448"
|
| 9 |
+
|
| 10 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
|
| 11 |
+
image = load_image(url)
|
| 12 |
+
|
| 13 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval()
|
| 14 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id)
|
| 15 |
+
|
| 16 |
+
# Leaving the prompt blank for pre-trained models
|
| 17 |
+
prompt = ""
|
| 18 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
|
| 19 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
| 20 |
+
|
| 21 |
+
with torch.inference_mode():
|
| 22 |
+
generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
|
| 23 |
+
generation = generation[0][input_len:]
|
| 24 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 25 |
+
print(decoded)
|