Spaces:
Paused
Paused
| import cv2 | |
| import torch | |
| import torchvision | |
| import numpy as np | |
| import torch.nn as nn | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import torch.nn.functional as F | |
| import torchvision.transforms as transforms | |
| from . model import BiSeNet | |
| transform = transforms.Compose([ | |
| transforms.Resize((512, 512)), | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) | |
| ]) | |
| def init_parsing_model(model_path, device="cpu"): | |
| net = BiSeNet(19) | |
| net.to(device) | |
| net.load_state_dict(torch.load(model_path)) | |
| net.eval() | |
| return net | |
| def transform_images(imgs): | |
| tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0) | |
| return tensor_images | |
| def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8): | |
| masks = [] | |
| for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"): | |
| batch_imgs = imgs[i:i + batch_size] | |
| tensor_images = transform_images(batch_imgs).to(device) | |
| with torch.no_grad(): | |
| out = net(tensor_images)[0] | |
| parsing = out.argmax(dim=1).cpu().numpy() | |
| batch_masks = np.isin(parsing, classes) | |
| masks.append(batch_masks) | |
| masks = np.concatenate(masks, axis=0) | |
| # masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1) | |
| for i, mask in enumerate(masks): | |
| cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8")) | |
| return masks | |