Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| from diffusers import FluxPipeline | |
| # Enable cuDNN benchmarking for potential performance improvement | |
| torch.backends.cudnn.benchmark = True | |
| # Set up device and data types | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| DTYPE = torch.float16 | |
| # Load the model | |
| pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-schnell", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| # Configure the pipeline | |
| pipe.enable_sequential_cpu_offload() | |
| pipe.vae.enable_tiling() | |
| pipe = pipe.to(DTYPE) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| image = pipe( | |
| prompt, | |
| num_inference_steps=num_inference_steps, | |
| num_images_per_prompt=1, | |
| guidance_scale=0.0, | |
| height=height, | |
| width=width, | |
| generator=generator, | |
| ).images[0] | |
| return image, seed | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# FLUX.1 [schnell] Image Generator") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt") | |
| run_button = gr.Button("Generate") | |
| with gr.Column(): | |
| result = gr.Image(label="Generated Image") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", randomize=True) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| width = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Width") | |
| height = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Height") | |
| num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=4, label="Number of inference steps") | |
| run_button.click( | |
| infer, | |
| inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.launch() |