Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| from PIL import Image | |
| from torchvision import transforms | |
| from diffusers import DiffusionPipeline | |
| # Define constants | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # Load the diffusion pipeline | |
| pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
| def preprocess_image(image, image_size): | |
| print(f"Preprocessing image to size: {image_size}x{image_size}") | |
| preprocess = transforms.Compose([ | |
| transforms.Resize((image_size, image_size)), # Use model-specific size | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]) # Ensure this matches the VAE's training normalization | |
| ]) | |
| image = preprocess(image).unsqueeze(0).to(device, dtype=dtype) | |
| print(f"Image shape after preprocessing: {image.shape}") | |
| return image | |
| def encode_image(image, vae): | |
| print("Encoding image using the VAE") | |
| with torch.no_grad(): | |
| latents = vae.encode(image).latent_dist.sample() * 0.18215 | |
| print(f"Latents shape after encoding: {latents.shape}") | |
| return latents | |
| def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
| print(f"Inference started with prompt: {prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| print(f"Using seed: {seed}") | |
| generator = torch.Generator().manual_seed(seed) | |
| if init_image is None: | |
| print("No initial image provided, processing text2img") | |
| # Process text2img | |
| try: | |
| print("Calling the diffusion pipeline for text2img") | |
| result = pipe( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=0.0 | |
| ) | |
| image = result.images[0] | |
| print(f"Generated image shape: {image.size}") | |
| # Since the 'latents' attribute is not present, we need to inspect other attributes | |
| print(f"Result attributes: {dir(result)}") | |
| except Exception as e: | |
| print(f"Pipeline call failed with error: {e}") | |
| raise | |
| else: | |
| print("Initial image provided, processing img2img") | |
| vae_image_size = pipe.vae.config.sample_size | |
| print(f"Expected VAE image size: {vae_image_size}") | |
| init_image = init_image.convert("RGB") | |
| init_image = preprocess_image(init_image, vae_image_size) | |
| latents = encode_image(init_image, pipe.vae) | |
| # Interpolating latents | |
| print(f"Interpolating latents to size: {(height // 8, width // 8)}") | |
| latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8)) | |
| print(f"Latents shape after interpolation: {latents.shape}") | |
| # Convert latent channels to 64 as expected by the transformer | |
| latent_channels = pipe.vae.config.latent_channels | |
| print(f"Expected latent channels: 64, current latent channels: {latent_channels}") | |
| if latent_channels != 64: | |
| print(f"Converting latent channels from {latent_channels} to 64") | |
| conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype) | |
| latents = conv(latents) | |
| print(f"Latents shape after channel conversion: {latents.shape}") | |
| # Debugging input shape before calling transformer | |
| print(f"Latents shape before reshaping for transformer: {latents.shape}") | |
| # Reshape latents to match the transformer's input expectations | |
| latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64) # Assuming the transformer expects (batch, sequence, feature) | |
| print(f"Latents shape after reshaping for transformer: {latents.shape}") | |
| # Adding extra debug to understand what transformer expects | |
| try: | |
| print("Calling the transformer with latents") | |
| # Dummy call to transformer to understand the shape requirement | |
| _ = pipe.transformer(latents) | |
| print("Transformer call succeeded") | |
| except Exception as e: | |
| print(f"Transformer call failed with error: {e}") | |
| raise | |
| print("Calling the diffusion pipeline with latents") | |
| try: | |
| image = pipe( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=0.0, | |
| latents=latents | |
| ).images[0] | |
| except Exception as e: | |
| print(f"Pipeline call with latents failed with error: {e}") | |
| raise | |
| print("Inference complete") | |
| return image, seed | |
| # Define example prompts | |
| examples = [ | |
| "a tiny astronaut hatching from an egg on the moon", | |
| "a cat holding a sign that says hello world", | |
| "an anime illustration of a wiener schnitzel", | |
| ] | |
| # CSS styling for the Japanese-inspired interface | |
| css = """ | |
| body { | |
| background-color: #fff; | |
| font-family: 'Noto Sans JP', sans-serif; | |
| color: #333; | |
| } | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| border: 2px solid #000; | |
| padding: 20px; | |
| background-color: #f7f7f7; | |
| border-radius: 10px; | |
| } | |
| .gr-button { | |
| background-color: #e60012; | |
| color: #fff; | |
| border: 2px solid #000; | |
| } | |
| .gr-button:hover { | |
| background-color: #c20010; | |
| } | |
| .gr-slider, .gr-checkbox, .gr-textbox { | |
| border: 2px solid #000; | |
| } | |
| .gr-accordion { | |
| border: 2px solid #000; | |
| background-color: #fff; | |
| } | |
| .gr-image { | |
| border: 2px solid #000; | |
| } | |
| """ | |
| # Create the Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(""" | |
| # FLUX.1 [schnell] | |
| 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation | |
| [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Row(): | |
| init_image = gr.Image(label="Initial Image (optional)", type="pil") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=4, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.launch() | |