Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from PIL import Image | |
| from torchvision import transforms | |
| from diffusers import DiffusionPipeline, AutoencoderKL | |
| # Constants | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # Load models | |
| pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) | |
| pipe.enable_model_cpu_offload() | |
| pipe.vae.enable_slicing() | |
| pipe.vae.enable_tiling() | |
| vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae").to(device) | |
| def preprocess_image(image, image_size): | |
| preprocess = transforms.Compose([ | |
| transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]) | |
| ]) | |
| image = preprocess(image).unsqueeze(0).to(device, dtype=torch.float32) | |
| return image | |
| def encode_image(image): | |
| with torch.no_grad(): | |
| latents = vae.encode(image).latent_dist.sample() * 0.18215 | |
| return latents | |
| def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| try: | |
| if init_image is None: | |
| # text2img case | |
| image = pipe( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=0.0 | |
| ).images[0] | |
| else: | |
| # img2img case | |
| init_image = init_image.convert("RGB") | |
| init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size | |
| latents = encode_image(init_image) | |
| latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear') | |
| if latents.shape[1] != pipe.vae.config.latent_channels: | |
| conv = torch.nn.Conv2d(latents.shape[1], pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=dtype) | |
| latents = conv(latents.to(dtype)) | |
| latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels) | |
| image = pipe( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=0.0, | |
| latents=latents | |
| ).images[0] | |
| return image, seed | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image | |
| # Gradio interface setup | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt") | |
| init_image = gr.Image(label="Initial Image (optional)", type="pil") | |
| with gr.Row(): | |
| generate = gr.Button("Generate") | |
| with gr.Row(): | |
| result = gr.Image(label="Result") | |
| seed_output = gr.Number(label="Seed") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
| height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
| num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4) | |
| generate.click( | |
| infer, | |
| inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps], | |
| outputs=[result, seed_output] | |
| ) | |
| demo.launch() |