Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
126a4f5
1
Parent(s):
00ecf1c
let's work this out
Browse files
app.py
CHANGED
|
@@ -1,115 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
import spaces
|
| 5 |
import torch
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# Enable TF32 for A100 (this is a form of FP8 computation)
|
| 9 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 10 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 11 |
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
-
dtype = torch.float16
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
MAX_IMAGE_SIZE = 2048
|
| 24 |
|
| 25 |
@spaces.GPU()
|
| 26 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 27 |
if randomize_seed:
|
| 28 |
-
seed =
|
| 29 |
-
generator = torch.Generator().manual_seed(seed)
|
| 30 |
image = pipe(
|
| 31 |
prompt=prompt,
|
| 32 |
width=width,
|
| 33 |
height=height,
|
| 34 |
num_inference_steps=num_inference_steps,
|
| 35 |
generator=generator,
|
| 36 |
-
guidance_scale=0.0
|
|
|
|
| 37 |
).images[0]
|
| 38 |
return image, seed
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
""
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
""")
|
| 59 |
-
with gr.Row():
|
| 60 |
-
prompt = gr.Text(
|
| 61 |
-
label="Prompt",
|
| 62 |
-
show_label=False,
|
| 63 |
-
max_lines=1,
|
| 64 |
-
placeholder="Enter your prompt",
|
| 65 |
-
container=False,
|
| 66 |
-
)
|
| 67 |
-
run_button = gr.Button("Run", scale=0)
|
| 68 |
-
result = gr.Image(label="Result", show_label=False)
|
| 69 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 70 |
-
seed = gr.Slider(
|
| 71 |
-
label="Seed",
|
| 72 |
-
minimum=0,
|
| 73 |
-
maximum=MAX_SEED,
|
| 74 |
-
step=1,
|
| 75 |
-
value=0,
|
| 76 |
-
)
|
| 77 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 78 |
-
with gr.Row():
|
| 79 |
-
width = gr.Slider(
|
| 80 |
-
label="Width",
|
| 81 |
-
minimum=256,
|
| 82 |
-
maximum=MAX_IMAGE_SIZE,
|
| 83 |
-
step=32,
|
| 84 |
-
value=1024,
|
| 85 |
-
)
|
| 86 |
-
height = gr.Slider(
|
| 87 |
-
label="Height",
|
| 88 |
-
minimum=256,
|
| 89 |
-
maximum=MAX_IMAGE_SIZE,
|
| 90 |
-
step=32,
|
| 91 |
-
value=1024,
|
| 92 |
-
)
|
| 93 |
-
with gr.Row():
|
| 94 |
-
num_inference_steps = gr.Slider(
|
| 95 |
-
label="Number of inference steps",
|
| 96 |
-
minimum=1,
|
| 97 |
-
maximum=50,
|
| 98 |
-
step=1,
|
| 99 |
-
value=4,
|
| 100 |
-
)
|
| 101 |
-
gr.Examples(
|
| 102 |
-
examples=examples,
|
| 103 |
-
fn=infer,
|
| 104 |
-
inputs=[prompt],
|
| 105 |
-
outputs=[result, seed],
|
| 106 |
-
cache_examples="lazy"
|
| 107 |
-
)
|
| 108 |
-
gr.on(
|
| 109 |
-
triggers=[run_button.click, prompt.submit],
|
| 110 |
-
fn=infer,
|
| 111 |
-
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 112 |
-
outputs=[result, seed]
|
| 113 |
-
)
|
| 114 |
|
| 115 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import spaces
|
| 4 |
+
from diffusers import FluxPipeline
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 8 |
+
|
| 9 |
+
MODEL_ID = "drbaph/FLUX.1-schnell-dev-merged-fp8-4step"
|
| 10 |
+
MODEL_FILE = "flux1-schnell-dev-merged-fp8-4step.safetensors"
|
| 11 |
|
| 12 |
+
def load_model():
|
| 13 |
+
pipe = FluxPipeline.from_single_file(
|
| 14 |
+
f"https://huggingface.co/{MODEL_ID}/resolve/main/{MODEL_FILE}",
|
| 15 |
+
torch_dtype=dtype
|
| 16 |
+
)
|
| 17 |
+
pipe.to(device)
|
| 18 |
+
return pipe
|
| 19 |
|
| 20 |
+
pipe = load_model()
|
| 21 |
+
|
| 22 |
+
MAX_SEED = 2**32 - 1
|
| 23 |
MAX_IMAGE_SIZE = 2048
|
| 24 |
|
| 25 |
@spaces.GPU()
|
| 26 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 27 |
if randomize_seed:
|
| 28 |
+
seed = torch.randint(0, MAX_SEED, (1,)).item()
|
| 29 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 30 |
image = pipe(
|
| 31 |
prompt=prompt,
|
| 32 |
width=width,
|
| 33 |
height=height,
|
| 34 |
num_inference_steps=num_inference_steps,
|
| 35 |
generator=generator,
|
| 36 |
+
guidance_scale=0.0,
|
| 37 |
+
max_sequence_length=256
|
| 38 |
).images[0]
|
| 39 |
return image, seed
|
| 40 |
|
| 41 |
+
# Gradio interface
|
| 42 |
+
with gr.Blocks() as demo:
|
| 43 |
+
gr.Markdown("# FLUX.1 [schnell-dev-merged-fp8-4step]")
|
| 44 |
+
with gr.Row():
|
| 45 |
+
prompt = gr.Textbox(label="Prompt")
|
| 46 |
+
run_button = gr.Button("Generate")
|
| 47 |
+
with gr.Row():
|
| 48 |
+
result = gr.Image(label="Generated Image")
|
| 49 |
+
seed_output = gr.Number(label="Seed Used")
|
| 50 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 51 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 52 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 53 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 54 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 55 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=10, step=1, value=4)
|
| 56 |
+
|
| 57 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps]
|
| 58 |
+
run_button.click(fn=infer, inputs=inputs, outputs=[result, seed_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
demo.launch()
|