Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
383a90d
1
Parent(s):
d9f1205
move back to complex code
Browse files
app.py
CHANGED
|
@@ -1,15 +1,21 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import torch
|
|
|
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
from diffusers import DiffusionPipeline
|
| 6 |
|
| 7 |
-
|
| 8 |
# Constants
|
| 9 |
-
MAX_SEED = 2**32 - 1
|
| 10 |
-
MAX_IMAGE_SIZE = 2048
|
| 11 |
dtype = torch.bfloat16
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Load FLUX model
|
| 15 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
|
@@ -17,61 +23,86 @@ pipe.enable_model_cpu_offload()
|
|
| 17 |
pipe.vae.enable_slicing()
|
| 18 |
pipe.vae.enable_tiling()
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
print(f"VAE Encoder: {pipe.vae.encoder}")
|
| 23 |
-
print(f"VAE Decoder: {pipe.vae.decoder}")
|
| 24 |
-
print(f"x_embedder shape: {pipe.transformer.x_embedder.weight.shape}")
|
| 25 |
-
print(f"First transformer block shape: {pipe.transformer.transformer_blocks[0].attn.to_q.weight.shape}")
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
@spaces.GPU()
|
| 30 |
-
def infer(prompt, init_image=None, seed=
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
try:
|
| 34 |
if init_image is None:
|
| 35 |
# text2img case
|
| 36 |
-
print("Running text-to-image generation")
|
| 37 |
image = pipe(
|
| 38 |
prompt=prompt,
|
| 39 |
height=height,
|
| 40 |
width=width,
|
| 41 |
num_inference_steps=num_inference_steps,
|
| 42 |
generator=generator,
|
| 43 |
-
guidance_scale=
|
| 44 |
).images[0]
|
| 45 |
else:
|
| 46 |
# img2img case
|
| 47 |
-
|
| 48 |
-
init_image = init_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
image = pipe(
|
| 50 |
prompt=prompt,
|
| 51 |
-
|
|
|
|
| 52 |
num_inference_steps=num_inference_steps,
|
| 53 |
generator=generator,
|
| 54 |
-
guidance_scale=
|
|
|
|
| 55 |
).images[0]
|
| 56 |
|
| 57 |
return image, seed
|
| 58 |
-
except RuntimeError as e:
|
| 59 |
-
if "mat1 and mat2 shapes cannot be multiplied" in str(e):
|
| 60 |
-
print("Matrix multiplication error detected. Tensor shapes:")
|
| 61 |
-
print(e)
|
| 62 |
-
# Here you could add code to print shapes of specific tensors if needed
|
| 63 |
-
else:
|
| 64 |
-
print(f"RuntimeError during inference: {e}")
|
| 65 |
-
import traceback
|
| 66 |
-
traceback.print_exc()
|
| 67 |
-
return Image.new("RGB", (width, height), (255, 0, 0)), seed
|
| 68 |
except Exception as e:
|
| 69 |
-
print(f"
|
| 70 |
import traceback
|
| 71 |
traceback.print_exc()
|
| 72 |
-
return Image.new("RGB", (width, height), (255, 0, 0)), seed
|
| 73 |
|
| 74 |
-
# Gradio interface
|
| 75 |
with gr.Blocks() as demo:
|
| 76 |
with gr.Row():
|
| 77 |
prompt = gr.Textbox(label="Prompt")
|
|
@@ -85,15 +116,15 @@ with gr.Blocks() as demo:
|
|
| 85 |
seed_output = gr.Number(label="Seed")
|
| 86 |
|
| 87 |
with gr.Accordion("Advanced Settings", open=False):
|
| 88 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=
|
|
|
|
| 89 |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 90 |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 91 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
|
| 92 |
-
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=20, step=0.1, value=0.0)
|
| 93 |
|
| 94 |
generate.click(
|
| 95 |
infer,
|
| 96 |
-
inputs=[prompt, init_image, seed, width, height, num_inference_steps
|
| 97 |
outputs=[result, seed_output]
|
| 98 |
)
|
| 99 |
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import random
|
| 5 |
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
from PIL import Image
|
| 8 |
+
from torchvision import transforms
|
| 9 |
from diffusers import DiffusionPipeline
|
| 10 |
|
|
|
|
| 11 |
# Constants
|
|
|
|
|
|
|
| 12 |
dtype = torch.bfloat16
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 15 |
+
MAX_IMAGE_SIZE = 2048
|
| 16 |
+
LATENT_CHANNELS = 16
|
| 17 |
+
TRANSFORMER_IN_CHANNELS = 64
|
| 18 |
+
SCALING_FACTOR = 0.3611
|
| 19 |
|
| 20 |
# Load FLUX model
|
| 21 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
|
|
|
| 23 |
pipe.vae.enable_slicing()
|
| 24 |
pipe.vae.enable_tiling()
|
| 25 |
|
| 26 |
+
# Add a projection layer to match transformer input
|
| 27 |
+
projection = nn.Linear(LATENT_CHANNELS, TRANSFORMER_IN_CHANNELS).to(device).to(dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def preprocess_image(image, image_size):
|
| 30 |
+
preprocess = transforms.Compose([
|
| 31 |
+
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
|
| 32 |
+
transforms.ToTensor(),
|
| 33 |
+
transforms.Normalize([0.5], [0.5])
|
| 34 |
+
])
|
| 35 |
+
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
| 36 |
+
return image
|
| 37 |
+
|
| 38 |
+
def process_latents(latents, height, width):
|
| 39 |
+
print(f"Input latent shape: {latents.shape}")
|
| 40 |
+
|
| 41 |
+
# Ensure latents are the correct shape
|
| 42 |
+
if latents.shape[2:] != (height // 8, width // 8):
|
| 43 |
+
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
| 44 |
+
print(f"Latent shape after potential interpolation: {latents.shape}")
|
| 45 |
+
|
| 46 |
+
# Reshape latents to [batch_size, seq_len, channels]
|
| 47 |
+
latents = latents.permute(0, 2, 3, 1).reshape(1, -1, LATENT_CHANNELS)
|
| 48 |
+
print(f"Reshaped latent shape: {latents.shape}")
|
| 49 |
+
|
| 50 |
+
# Project latents from 16 to 64 dimensions
|
| 51 |
+
latents = projection(latents)
|
| 52 |
+
print(f"Projected latent shape: {latents.shape}")
|
| 53 |
+
|
| 54 |
+
return latents
|
| 55 |
|
| 56 |
@spaces.GPU()
|
| 57 |
+
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 58 |
+
if randomize_seed:
|
| 59 |
+
seed = random.randint(0, MAX_SEED)
|
| 60 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 61 |
|
| 62 |
try:
|
| 63 |
if init_image is None:
|
| 64 |
# text2img case
|
|
|
|
| 65 |
image = pipe(
|
| 66 |
prompt=prompt,
|
| 67 |
height=height,
|
| 68 |
width=width,
|
| 69 |
num_inference_steps=num_inference_steps,
|
| 70 |
generator=generator,
|
| 71 |
+
guidance_scale=0.0
|
| 72 |
).images[0]
|
| 73 |
else:
|
| 74 |
# img2img case
|
| 75 |
+
init_image = init_image.convert("RGB")
|
| 76 |
+
init_image = preprocess_image(init_image, 1024) # Using 1024 as FLUX VAE sample size
|
| 77 |
+
|
| 78 |
+
# Encode the image using FLUX VAE
|
| 79 |
+
latents = pipe.vae.encode(init_image).latent_dist.sample() * SCALING_FACTOR
|
| 80 |
+
print(f"Initial latent shape from VAE: {latents.shape}")
|
| 81 |
+
|
| 82 |
+
# Process latents to match transformer input
|
| 83 |
+
latents = process_latents(latents, height, width)
|
| 84 |
+
|
| 85 |
+
print(f"x_embedder weight shape: {pipe.transformer.x_embedder.weight.shape}")
|
| 86 |
+
print(f"First transformer block input shape: {pipe.transformer.transformer_blocks[0].attn.to_q.weight.shape}")
|
| 87 |
+
|
| 88 |
image = pipe(
|
| 89 |
prompt=prompt,
|
| 90 |
+
height=height,
|
| 91 |
+
width=width,
|
| 92 |
num_inference_steps=num_inference_steps,
|
| 93 |
generator=generator,
|
| 94 |
+
guidance_scale=0.0,
|
| 95 |
+
latents=latents
|
| 96 |
).images[0]
|
| 97 |
|
| 98 |
return image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
except Exception as e:
|
| 100 |
+
print(f"Error during inference: {e}")
|
| 101 |
import traceback
|
| 102 |
traceback.print_exc()
|
| 103 |
+
return Image.new("RGB", (width, height), (255, 0, 0)), seed # Red fallback image
|
| 104 |
|
| 105 |
+
# Gradio interface setup
|
| 106 |
with gr.Blocks() as demo:
|
| 107 |
with gr.Row():
|
| 108 |
prompt = gr.Textbox(label="Prompt")
|
|
|
|
| 116 |
seed_output = gr.Number(label="Seed")
|
| 117 |
|
| 118 |
with gr.Accordion("Advanced Settings", open=False):
|
| 119 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 120 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 121 |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 122 |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 123 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4)
|
|
|
|
| 124 |
|
| 125 |
generate.click(
|
| 126 |
infer,
|
| 127 |
+
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
|
| 128 |
outputs=[result, seed_output]
|
| 129 |
)
|
| 130 |
|