Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
448d742
1
Parent(s):
6b927be
mapped weights and tried transform projection
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gradio as gr
|
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
import torch
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from torchvision import transforms
|
| 8 |
from diffusers import DiffusionPipeline
|
|
@@ -19,6 +20,9 @@ pipe.enable_model_cpu_offload()
|
|
| 19 |
pipe.vae.enable_slicing()
|
| 20 |
pipe.vae.enable_tiling()
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
def preprocess_image(image, image_size):
|
| 23 |
preprocess = transforms.Compose([
|
| 24 |
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
|
|
@@ -28,14 +32,20 @@ def preprocess_image(image, image_size):
|
|
| 28 |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
| 29 |
return image
|
| 30 |
|
| 31 |
-
def
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
@spaces.GPU()
|
| 41 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
@@ -61,27 +71,10 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 61 |
|
| 62 |
# Encode the image using FLUX VAE
|
| 63 |
latents = pipe.vae.encode(init_image).latent_dist.sample() * 0.18215
|
|
|
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
latents =
|
| 67 |
-
|
| 68 |
-
# Check shapes before reshaping
|
| 69 |
-
check_shapes(latents)
|
| 70 |
-
|
| 71 |
-
# Reshape latents to match the expected input shape of the transformer
|
| 72 |
-
latents = latents.reshape(1, -1)
|
| 73 |
-
|
| 74 |
-
# Check shapes after reshaping
|
| 75 |
-
check_shapes(latents)
|
| 76 |
-
|
| 77 |
-
# Print the type and shape of each argument
|
| 78 |
-
print(f"prompt type: {type(prompt)}, value: {prompt}")
|
| 79 |
-
print(f"height type: {type(height)}, value: {height}")
|
| 80 |
-
print(f"width type: {type(width)}, value: {width}")
|
| 81 |
-
print(f"num_inference_steps type: {type(num_inference_steps)}, value: {num_inference_steps}")
|
| 82 |
-
print(f"generator type: {type(generator)}")
|
| 83 |
-
print(f"guidance_scale type: {type(0.0)}, value: 0.0")
|
| 84 |
-
print(f"latents type: {type(latents)}, shape: {latents.shape}")
|
| 85 |
|
| 86 |
image = pipe(
|
| 87 |
prompt=prompt,
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import random
|
| 5 |
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
from PIL import Image
|
| 8 |
from torchvision import transforms
|
| 9 |
from diffusers import DiffusionPipeline
|
|
|
|
| 20 |
pipe.vae.enable_slicing()
|
| 21 |
pipe.vae.enable_tiling()
|
| 22 |
|
| 23 |
+
# Add a projection layer to match x_embedder input
|
| 24 |
+
projection = nn.Linear(32 * 128 * 128, 64).to(device).to(dtype)
|
| 25 |
+
|
| 26 |
def preprocess_image(image, image_size):
|
| 27 |
preprocess = transforms.Compose([
|
| 28 |
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
|
|
|
|
| 32 |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
| 33 |
return image
|
| 34 |
|
| 35 |
+
def process_latents(latents, height, width):
|
| 36 |
+
# Ensure latents are the correct shape (should be [1, 32, 128, 128])
|
| 37 |
+
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
|
| 38 |
+
print(f"Latent shape after interpolation: {latents.shape}")
|
| 39 |
+
|
| 40 |
+
# Flatten the latents
|
| 41 |
+
latents_flat = latents.reshape(1, -1)
|
| 42 |
+
print(f"Flattened latent shape: {latents_flat.shape}")
|
| 43 |
+
|
| 44 |
+
# Project to 64 dimensions
|
| 45 |
+
latents_projected = projection(latents_flat)
|
| 46 |
+
print(f"Projected latent shape: {latents_projected.shape}")
|
| 47 |
+
|
| 48 |
+
return latents_projected
|
| 49 |
|
| 50 |
@spaces.GPU()
|
| 51 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 71 |
|
| 72 |
# Encode the image using FLUX VAE
|
| 73 |
latents = pipe.vae.encode(init_image).latent_dist.sample() * 0.18215
|
| 74 |
+
print(f"Initial latent shape from VAE: {latents.shape}")
|
| 75 |
|
| 76 |
+
# Process latents to match x_embedder input
|
| 77 |
+
latents = process_latents(latents, height, width)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
image = pipe(
|
| 80 |
prompt=prompt,
|