Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
5b33905
1
Parent(s):
409e82d
console logging for txt2img
Browse files
app.py
CHANGED
|
@@ -42,12 +42,32 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 42 |
print(f"Using seed: {seed}")
|
| 43 |
generator = torch.Generator().manual_seed(seed)
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
print("Initial image provided, processing img2img")
|
|
|
|
|
|
|
| 51 |
init_image = init_image.convert("RGB")
|
| 52 |
init_image = preprocess_image(init_image, vae_image_size)
|
| 53 |
latents = encode_image(init_image, pipe.vae)
|
|
@@ -66,11 +86,13 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 66 |
latents = conv(latents)
|
| 67 |
print(f"Latents shape after channel conversion: {latents.shape}")
|
| 68 |
|
|
|
|
|
|
|
|
|
|
| 69 |
# Reshape latents to match the transformer's input expectations
|
| 70 |
-
latents = latents.view(1, 64
|
| 71 |
-
print(f"Latents shape after reshaping: {latents.shape}")
|
| 72 |
|
| 73 |
-
# Avoid flattening, ensure latents are in the expected shape for the transformer
|
| 74 |
# Adding extra debug to understand what transformer expects
|
| 75 |
try:
|
| 76 |
print("Calling the transformer with latents")
|
|
@@ -91,16 +113,6 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 91 |
guidance_scale=0.0,
|
| 92 |
latents=latents
|
| 93 |
).images[0]
|
| 94 |
-
else:
|
| 95 |
-
print("No initial image provided, processing text2img")
|
| 96 |
-
image = pipe(
|
| 97 |
-
prompt=prompt,
|
| 98 |
-
height=height,
|
| 99 |
-
width=width,
|
| 100 |
-
num_inference_steps=num_inference_steps,
|
| 101 |
-
generator=generator,
|
| 102 |
-
guidance_scale=0.0
|
| 103 |
-
).images[0]
|
| 104 |
|
| 105 |
print("Inference complete")
|
| 106 |
return image, seed
|
|
@@ -109,6 +121,7 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 109 |
|
| 110 |
|
| 111 |
|
|
|
|
| 112 |
# Define example prompts
|
| 113 |
examples = [
|
| 114 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
|
| 42 |
print(f"Using seed: {seed}")
|
| 43 |
generator = torch.Generator().manual_seed(seed)
|
| 44 |
|
| 45 |
+
if init_image is None:
|
| 46 |
+
print("No initial image provided, processing text2img")
|
| 47 |
+
# Process text2img
|
| 48 |
+
try:
|
| 49 |
+
print("Calling the diffusion pipeline without latents")
|
| 50 |
+
result = pipe(
|
| 51 |
+
prompt=prompt,
|
| 52 |
+
height=height,
|
| 53 |
+
width=width,
|
| 54 |
+
num_inference_steps=num_inference_steps,
|
| 55 |
+
generator=generator,
|
| 56 |
+
guidance_scale=0.0
|
| 57 |
+
)
|
| 58 |
+
image = result.images[0]
|
| 59 |
+
latents = result.latents
|
| 60 |
+
|
| 61 |
+
# Log the latent shapes from text2img process
|
| 62 |
+
print(f"Latents shape from text2img: {latents.shape}")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print(f"Pipeline call failed with error: {e}")
|
| 65 |
+
raise
|
| 66 |
+
|
| 67 |
+
else:
|
| 68 |
print("Initial image provided, processing img2img")
|
| 69 |
+
vae_image_size = pipe.vae.config.sample_size
|
| 70 |
+
print(f"Expected VAE image size: {vae_image_size}")
|
| 71 |
init_image = init_image.convert("RGB")
|
| 72 |
init_image = preprocess_image(init_image, vae_image_size)
|
| 73 |
latents = encode_image(init_image, pipe.vae)
|
|
|
|
| 86 |
latents = conv(latents)
|
| 87 |
print(f"Latents shape after channel conversion: {latents.shape}")
|
| 88 |
|
| 89 |
+
# Debugging input shape before calling transformer
|
| 90 |
+
print(f"Latents shape before reshaping for transformer: {latents.shape}")
|
| 91 |
+
|
| 92 |
# Reshape latents to match the transformer's input expectations
|
| 93 |
+
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64) # Assuming the transformer expects (batch, sequence, feature)
|
| 94 |
+
print(f"Latents shape after reshaping for transformer: {latents.shape}")
|
| 95 |
|
|
|
|
| 96 |
# Adding extra debug to understand what transformer expects
|
| 97 |
try:
|
| 98 |
print("Calling the transformer with latents")
|
|
|
|
| 113 |
guidance_scale=0.0,
|
| 114 |
latents=latents
|
| 115 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
print("Inference complete")
|
| 118 |
return image, seed
|
|
|
|
| 121 |
|
| 122 |
|
| 123 |
|
| 124 |
+
|
| 125 |
# Define example prompts
|
| 126 |
examples = [
|
| 127 |
"a tiny astronaut hatching from an egg on the moon",
|