Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
cec333d
1
Parent(s):
d027eec
handling
Browse files
app.py
CHANGED
|
@@ -13,43 +13,37 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|
| 15 |
|
| 16 |
-
# Load the diffusion pipeline
|
| 17 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def preprocess_image(image, image_size):
|
| 20 |
-
print(f"Preprocessing image to size: {image_size}x{image_size}")
|
| 21 |
preprocess = transforms.Compose([
|
| 22 |
-
transforms.Resize((image_size, image_size)),
|
| 23 |
transforms.ToTensor(),
|
| 24 |
-
transforms.Normalize([0.5], [0.5])
|
| 25 |
])
|
| 26 |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
| 27 |
-
print(f"Image shape after preprocessing: {image.shape}")
|
| 28 |
return image
|
| 29 |
|
| 30 |
def encode_image(image, vae):
|
| 31 |
-
print("Encoding image using the VAE")
|
| 32 |
with torch.no_grad():
|
| 33 |
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
| 34 |
-
print(f"Latents shape after encoding: {latents.shape}")
|
| 35 |
return latents
|
| 36 |
|
| 37 |
-
# A utility function to log shapes and other relevant information
|
| 38 |
-
def log_tensor_info(tensor, name):
|
| 39 |
-
print(f"{name} shape: {tensor.shape} dtype: {tensor.dtype} device: {tensor.device}")
|
| 40 |
-
|
| 41 |
@spaces.GPU()
|
| 42 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 43 |
-
print(f"Inference started with prompt: {prompt}")
|
| 44 |
if randomize_seed:
|
| 45 |
seed = random.randint(0, MAX_SEED)
|
| 46 |
-
print(f"Using seed: {seed}")
|
| 47 |
generator = torch.Generator().manual_seed(seed)
|
| 48 |
|
|
|
|
|
|
|
| 49 |
if init_image is None:
|
| 50 |
-
print("No initial image provided, processing text2img")
|
| 51 |
try:
|
| 52 |
-
print("Calling the diffusion pipeline for text2img")
|
| 53 |
result = pipe(
|
| 54 |
prompt=prompt,
|
| 55 |
height=height,
|
|
@@ -60,50 +54,35 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 60 |
max_sequence_length=256
|
| 61 |
)
|
| 62 |
image = result.images[0]
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
print("Logging complete.")
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Pipeline call failed with error: {e}")
|
| 68 |
-
|
| 69 |
else:
|
| 70 |
-
|
| 71 |
-
vae_image_size = pipe.vae.config.sample_size
|
| 72 |
-
print(f"Expected VAE image size: {vae_image_size}")
|
| 73 |
init_image = init_image.convert("RGB")
|
| 74 |
init_image = preprocess_image(init_image, vae_image_size)
|
| 75 |
latents = encode_image(init_image, pipe.vae)
|
| 76 |
|
| 77 |
-
print("Interpolating latents to match model's input size...")
|
| 78 |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
latent_channels = pipe.vae.config.latent_channels
|
| 82 |
-
print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
|
| 83 |
if latent_channels != 64:
|
| 84 |
-
print(f"Converting latent channels from {latent_channels} to 64")
|
| 85 |
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
|
| 86 |
latents = conv(latents)
|
| 87 |
-
log_tensor_info(latents, "Latents after channel conversion")
|
| 88 |
|
| 89 |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
|
| 90 |
-
log_tensor_info(latents, "Latents after reshaping for transformer")
|
| 91 |
|
| 92 |
try:
|
| 93 |
-
print("Calling the transformer with latents")
|
| 94 |
-
# Check if timestep is required and initialize it if necessary
|
| 95 |
if 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
|
| 96 |
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
|
| 97 |
_ = pipe.transformer(latents, timesteps=timestep)
|
| 98 |
else:
|
| 99 |
_ = pipe.transformer(latents)
|
| 100 |
-
print("Transformer call succeeded")
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
|
| 103 |
-
return
|
| 104 |
|
| 105 |
try:
|
| 106 |
-
print("Calling the diffusion pipeline with latents")
|
| 107 |
image = pipe(
|
| 108 |
prompt=prompt,
|
| 109 |
height=height,
|
|
@@ -115,12 +94,12 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
| 115 |
).images[0]
|
| 116 |
except Exception as e:
|
| 117 |
print(f"Pipeline call with latents failed with error: {e}")
|
| 118 |
-
return
|
| 119 |
|
| 120 |
-
print("Inference complete")
|
| 121 |
return image, seed
|
| 122 |
|
| 123 |
|
|
|
|
| 124 |
# Define example prompts
|
| 125 |
examples = [
|
| 126 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|
| 15 |
|
| 16 |
+
# Load the diffusion pipeline with optimizations
|
| 17 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
| 18 |
+
pipe.enable_model_cpu_offload()
|
| 19 |
+
pipe.vae.enable_slicing()
|
| 20 |
+
pipe.vae.enable_tiling()
|
| 21 |
+
pipe.to(device)
|
| 22 |
|
| 23 |
def preprocess_image(image, image_size):
|
|
|
|
| 24 |
preprocess = transforms.Compose([
|
| 25 |
+
transforms.Resize((image_size, image_size)),
|
| 26 |
transforms.ToTensor(),
|
| 27 |
+
transforms.Normalize([0.5], [0.5])
|
| 28 |
])
|
| 29 |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
|
|
|
| 30 |
return image
|
| 31 |
|
| 32 |
def encode_image(image, vae):
|
|
|
|
| 33 |
with torch.no_grad():
|
| 34 |
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
|
|
|
| 35 |
return latents
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
@spaces.GPU()
|
| 38 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 39 |
if randomize_seed:
|
| 40 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 41 |
generator = torch.Generator().manual_seed(seed)
|
| 42 |
|
| 43 |
+
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
|
| 44 |
+
|
| 45 |
if init_image is None:
|
|
|
|
| 46 |
try:
|
|
|
|
| 47 |
result = pipe(
|
| 48 |
prompt=prompt,
|
| 49 |
height=height,
|
|
|
|
| 54 |
max_sequence_length=256
|
| 55 |
)
|
| 56 |
image = result.images[0]
|
| 57 |
+
return image, seed
|
|
|
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
print(f"Pipeline call failed with error: {e}")
|
| 60 |
+
return fallback_image, seed
|
| 61 |
else:
|
| 62 |
+
vae_image_size = pipe.vae.config.sample_size # Ensure this is correct
|
|
|
|
|
|
|
| 63 |
init_image = init_image.convert("RGB")
|
| 64 |
init_image = preprocess_image(init_image, vae_image_size)
|
| 65 |
latents = encode_image(init_image, pipe.vae)
|
| 66 |
|
|
|
|
| 67 |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
|
| 68 |
+
latent_channels = pipe.vae.config.latent_channels # Ensure this is correct
|
|
|
|
|
|
|
|
|
|
| 69 |
if latent_channels != 64:
|
|
|
|
| 70 |
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
|
| 71 |
latents = conv(latents)
|
|
|
|
| 72 |
|
| 73 |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
|
|
|
|
| 74 |
|
| 75 |
try:
|
|
|
|
|
|
|
| 76 |
if 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
|
| 77 |
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
|
| 78 |
_ = pipe.transformer(latents, timesteps=timestep)
|
| 79 |
else:
|
| 80 |
_ = pipe.transformer(latents)
|
|
|
|
| 81 |
except Exception as e:
|
| 82 |
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
|
| 83 |
+
return fallback_image, seed
|
| 84 |
|
| 85 |
try:
|
|
|
|
| 86 |
image = pipe(
|
| 87 |
prompt=prompt,
|
| 88 |
height=height,
|
|
|
|
| 94 |
).images[0]
|
| 95 |
except Exception as e:
|
| 96 |
print(f"Pipeline call with latents failed with error: {e}")
|
| 97 |
+
return fallback_image, seed
|
| 98 |
|
|
|
|
| 99 |
return image, seed
|
| 100 |
|
| 101 |
|
| 102 |
+
|
| 103 |
# Define example prompts
|
| 104 |
examples = [
|
| 105 |
"a tiny astronaut hatching from an egg on the moon",
|