Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
Β·
f071803
1
Parent(s):
817a141
main push
Browse files
app.py
CHANGED
|
@@ -12,7 +12,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 12 |
MAX_IMAGE_SIZE = 2048
|
| 13 |
MIN_IMAGE_SIZE = 256
|
| 14 |
DEFAULT_IMAGE_SIZE = 1024
|
| 15 |
-
MAX_PROMPT_LENGTH =
|
| 16 |
|
| 17 |
# Check for GPU availability
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -23,14 +23,19 @@ dtype = torch.float16 if device == "cuda" else torch.float32
|
|
| 23 |
|
| 24 |
def load_model():
|
| 25 |
try:
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
raise RuntimeError(f"Failed to load the model: {str(e)}")
|
| 29 |
|
| 30 |
# Load the diffusion pipeline
|
| 31 |
pipe = load_model()
|
| 32 |
|
| 33 |
-
def preprocess_image(image, target_size
|
| 34 |
# Preprocess the image for the VAE
|
| 35 |
preprocess = transforms.Compose([
|
| 36 |
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS),
|
|
@@ -57,7 +62,7 @@ def validate_inputs(prompt, width, height, num_inference_steps):
|
|
| 57 |
raise ValueError("Number of inference steps must be between 1 and 50.")
|
| 58 |
|
| 59 |
@spaces.GPU()
|
| 60 |
-
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 61 |
try:
|
| 62 |
validate_inputs(prompt, width, height, num_inference_steps)
|
| 63 |
|
|
@@ -74,13 +79,15 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_
|
|
| 74 |
init_image = preprocess_image(init_image, (height, width))
|
| 75 |
|
| 76 |
# Encode the image using the VAE
|
| 77 |
-
|
| 78 |
-
init_latents = pipe.vae.encode(init_image).latent_dist.sample(generator=generator)
|
| 79 |
-
init_latents = 0.18215 * init_latents
|
| 80 |
|
| 81 |
# Ensure latents are correctly shaped
|
| 82 |
init_latents = torch.nn.functional.interpolate(init_latents, size=(height // 8, width // 8), mode='bilinear', align_corners=False)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
image = pipe(
|
| 85 |
prompt=prompt,
|
| 86 |
height=height,
|
|
@@ -88,7 +95,7 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_
|
|
| 88 |
num_inference_steps=num_inference_steps,
|
| 89 |
generator=generator,
|
| 90 |
guidance_scale=0.0,
|
| 91 |
-
latents=
|
| 92 |
max_sequence_length=max_sequence_length
|
| 93 |
).images[0]
|
| 94 |
else:
|
|
@@ -209,6 +216,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 209 |
step=1,
|
| 210 |
value=4,
|
| 211 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
gr.Examples(
|
| 214 |
examples=examples,
|
|
@@ -221,12 +235,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 221 |
gr.on(
|
| 222 |
triggers=[run_button.click, prompt.submit],
|
| 223 |
fn=infer,
|
| 224 |
-
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
|
| 225 |
outputs=[result, seed]
|
| 226 |
)
|
| 227 |
|
| 228 |
if __name__ == "__main__":
|
| 229 |
-
demo.launch()
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
| 12 |
MAX_IMAGE_SIZE = 2048
|
| 13 |
MIN_IMAGE_SIZE = 256
|
| 14 |
DEFAULT_IMAGE_SIZE = 1024
|
| 15 |
+
MAX_PROMPT_LENGTH = 256 # Changed to 256 as per FLUX.1-schnell requirements
|
| 16 |
|
| 17 |
# Check for GPU availability
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 23 |
|
| 24 |
def load_model():
|
| 25 |
try:
|
| 26 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
| 27 |
+
pipe.to(device)
|
| 28 |
+
pipe.enable_model_cpu_offload()
|
| 29 |
+
pipe.vae.enable_slicing()
|
| 30 |
+
pipe.vae.enable_tiling()
|
| 31 |
+
return pipe
|
| 32 |
except Exception as e:
|
| 33 |
raise RuntimeError(f"Failed to load the model: {str(e)}")
|
| 34 |
|
| 35 |
# Load the diffusion pipeline
|
| 36 |
pipe = load_model()
|
| 37 |
|
| 38 |
+
def preprocess_image(image, target_size):
|
| 39 |
# Preprocess the image for the VAE
|
| 40 |
preprocess = transforms.Compose([
|
| 41 |
transforms.Resize(target_size, interpolation=transforms.InterpolationMode.LANCZOS),
|
|
|
|
| 62 |
raise ValueError("Number of inference steps must be between 1 and 50.")
|
| 63 |
|
| 64 |
@spaces.GPU()
|
| 65 |
+
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=DEFAULT_IMAGE_SIZE, height=DEFAULT_IMAGE_SIZE, num_inference_steps=4, strength=0.8, progress=gr.Progress(track_tqdm=True)):
|
| 66 |
try:
|
| 67 |
validate_inputs(prompt, width, height, num_inference_steps)
|
| 68 |
|
|
|
|
| 79 |
init_image = preprocess_image(init_image, (height, width))
|
| 80 |
|
| 81 |
# Encode the image using the VAE
|
| 82 |
+
init_latents = encode_image(init_image, pipe.vae)
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Ensure latents are correctly shaped
|
| 85 |
init_latents = torch.nn.functional.interpolate(init_latents, size=(height // 8, width // 8), mode='bilinear', align_corners=False)
|
| 86 |
|
| 87 |
+
# Add noise to latents
|
| 88 |
+
noise = torch.randn_like(init_latents)
|
| 89 |
+
latents = noise + strength * (init_latents - noise)
|
| 90 |
+
|
| 91 |
image = pipe(
|
| 92 |
prompt=prompt,
|
| 93 |
height=height,
|
|
|
|
| 95 |
num_inference_steps=num_inference_steps,
|
| 96 |
generator=generator,
|
| 97 |
guidance_scale=0.0,
|
| 98 |
+
latents=latents,
|
| 99 |
max_sequence_length=max_sequence_length
|
| 100 |
).images[0]
|
| 101 |
else:
|
|
|
|
| 216 |
step=1,
|
| 217 |
value=4,
|
| 218 |
)
|
| 219 |
+
strength = gr.Slider(
|
| 220 |
+
label="Strength (for img2img)",
|
| 221 |
+
minimum=0.0,
|
| 222 |
+
maximum=1.0,
|
| 223 |
+
step=0.01,
|
| 224 |
+
value=0.8,
|
| 225 |
+
)
|
| 226 |
|
| 227 |
gr.Examples(
|
| 228 |
examples=examples,
|
|
|
|
| 235 |
gr.on(
|
| 236 |
triggers=[run_button.click, prompt.submit],
|
| 237 |
fn=infer,
|
| 238 |
+
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps, strength],
|
| 239 |
outputs=[result, seed]
|
| 240 |
)
|
| 241 |
|
| 242 |
if __name__ == "__main__":
|
| 243 |
+
demo.launch()
|
|
|
|
|
|
|
|
|