Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langchain_core.prompts import PromptTemplate
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 6 |
+
import google.generativeai as genai
|
| 7 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
+
|
| 11 |
+
# Configure Gemini API
|
| 12 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
| 13 |
+
|
| 14 |
+
# Load Mistral model
|
| 15 |
+
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
|
| 16 |
+
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 17 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
+
dtype = torch.bfloat16
|
| 19 |
+
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
| 20 |
+
|
| 21 |
+
def initialize(file_path, question):
|
| 22 |
+
try:
|
| 23 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
| 24 |
+
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is
|
| 25 |
+
not contained in the context, say "answer not available in context" \n\n
|
| 26 |
+
Context: \n {context}?\n
|
| 27 |
+
Question: \n {question} \n
|
| 28 |
+
Answer:
|
| 29 |
+
"""
|
| 30 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 31 |
+
|
| 32 |
+
if os.path.exists(file_path):
|
| 33 |
+
pdf_loader = PyPDFLoader(file_path)
|
| 34 |
+
pages = pdf_loader.load_and_split()
|
| 35 |
+
context = "\n".join(str(page.page_content) for page in pages[:30])
|
| 36 |
+
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
| 37 |
+
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
|
| 38 |
+
gemini_answer = stuff_answer['output_text']
|
| 39 |
+
|
| 40 |
+
# Use Mistral model for additional text generation
|
| 41 |
+
mistral_prompt = f"Based on this answer: {gemini_answer}\nGenerate a follow-up question:"
|
| 42 |
+
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50)
|
| 45 |
+
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
|
| 46 |
+
|
| 47 |
+
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_output}"
|
| 48 |
+
return combined_output
|
| 49 |
+
else:
|
| 50 |
+
return "Error: Unable to process the document. Please ensure the PDF file is valid."
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return f"An error occurred: {str(e)}"
|
| 53 |
+
|
| 54 |
+
# Define Gradio Interface
|
| 55 |
+
input_file = gr.File(label="Upload PDF File")
|
| 56 |
+
input_question = gr.Textbox(label="Ask about the document")
|
| 57 |
+
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
|
| 58 |
+
|
| 59 |
+
def pdf_qa(file, question):
|
| 60 |
+
if file is None:
|
| 61 |
+
return "Please upload a PDF file first."
|
| 62 |
+
return initialize(file.name, question)
|
| 63 |
+
|
| 64 |
+
# Create Gradio Interface
|
| 65 |
+
gr.Interface(
|
| 66 |
+
fn=pdf_qa,
|
| 67 |
+
inputs=[input_file, input_question],
|
| 68 |
+
outputs=output_text,
|
| 69 |
+
title="RAG Knowledge Retrieval using Gemini API and Mistral Model",
|
| 70 |
+
description="Upload a PDF file and ask questions about the content."
|
| 71 |
+
).launch()
|