Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,102 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def
|
| 4 |
"""
|
| 5 |
-
|
| 6 |
|
| 7 |
Args:
|
| 8 |
-
|
| 9 |
-
letter (str): The letter to search for
|
| 10 |
|
| 11 |
Returns:
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
if __name__ == "__main__":
|
| 29 |
-
demo.launch(mcp_server=True
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
import gradio as gr
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import os
|
| 5 |
+
from PIL import Image
|
| 6 |
|
| 7 |
+
def prime_factors(n):
|
| 8 |
"""
|
| 9 |
+
Compute the prime factorization of a positive integer.
|
| 10 |
|
| 11 |
Args:
|
| 12 |
+
n (int): The integer to factorize. Must be greater than 1.
|
|
|
|
| 13 |
|
| 14 |
Returns:
|
| 15 |
+
List[int]: A list of prime factors in ascending order.
|
| 16 |
+
|
| 17 |
+
Raises:
|
| 18 |
+
ValueError: If n is not greater than 1.
|
| 19 |
+
"""
|
| 20 |
+
n = int(n)
|
| 21 |
+
if n <= 1:
|
| 22 |
+
raise ValueError("Input must be an integer greater than 1.")
|
| 23 |
+
|
| 24 |
+
factors = []
|
| 25 |
+
while n % 2 == 0:
|
| 26 |
+
factors.append(2)
|
| 27 |
+
n //= 2
|
| 28 |
+
|
| 29 |
+
divisor = 3
|
| 30 |
+
while divisor * divisor <= n:
|
| 31 |
+
while n % divisor == 0:
|
| 32 |
+
factors.append(divisor)
|
| 33 |
+
n //= divisor
|
| 34 |
+
divisor += 2
|
| 35 |
+
|
| 36 |
+
if n > 1:
|
| 37 |
+
factors.append(n)
|
| 38 |
+
|
| 39 |
+
return factors
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def generate_cheetah_image():
|
| 43 |
+
"""
|
| 44 |
+
Generate a cheetah image.
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
The generated cheetah image.
|
| 48 |
+
"""
|
| 49 |
+
return Path(os.path.dirname(__file__)) / "cheetah.jpg"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def image_orientation(image: Image.Image) -> str:
|
| 53 |
+
"""
|
| 54 |
+
Returns whether image is portrait or landscape.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
image (Image.Image): The image to check.
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
str: "Portrait" if image is portrait, "Landscape" if image is landscape.
|
| 61 |
+
"""
|
| 62 |
+
return "Portrait" if image.height > image.width else "Landscape"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def sepia(input_img):
|
| 66 |
+
"""
|
| 67 |
+
Apply a sepia filter to the input image.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
input_img (str): The input image to apply the sepia filter to.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
The sepia filtered image.
|
| 74 |
+
"""
|
| 75 |
+
sepia_filter = np.array([
|
| 76 |
+
[0.393, 0.769, 0.189],
|
| 77 |
+
[0.349, 0.686, 0.168],
|
| 78 |
+
[0.272, 0.534, 0.131]
|
| 79 |
+
])
|
| 80 |
+
sepia_img = input_img.dot(sepia_filter.T)
|
| 81 |
+
sepia_img /= sepia_img.max()
|
| 82 |
+
return sepia_img
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
demo = gr.TabbedInterface(
|
| 87 |
+
[
|
| 88 |
+
gr.Interface(prime_factors, gr.Textbox(), gr.Textbox(), api_name="prime_factors"),
|
| 89 |
+
gr.Interface(generate_cheetah_image, None, gr.Image(), api_name="generate_cheetah_image"),
|
| 90 |
+
gr.Interface(image_orientation, gr.Image(type="pil"), gr.Textbox(), api_name="image_orientation"),
|
| 91 |
+
gr.Interface(sepia, gr.Image(), gr.Image(), api_name="sepia"),
|
| 92 |
+
],
|
| 93 |
+
[
|
| 94 |
+
"Prime Factors",
|
| 95 |
+
"Cheetah Image",
|
| 96 |
+
"Image Orientation Checker",
|
| 97 |
+
"Sepia Filter",
|
| 98 |
+
]
|
| 99 |
)
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
+
demo.launch(mcp_server=True)
|