Spaces:
Paused
Paused
| import numpy as np | |
| import random | |
| import torch | |
| from tqdm import tqdm | |
| from transformers import AutoTokenizer | |
| from utils.classifier_model import SchemaItemClassifier | |
| from transformers.trainer_utils import set_seed | |
| def prepare_inputs_and_labels(sample, tokenizer): | |
| table_names = [table["table_name"] for table in sample["schema"]["schema_items"]] | |
| column_names = [table["column_names"] for table in sample["schema"]["schema_items"]] | |
| column_num_in_each_table = [len(table["column_names"]) for table in sample["schema"]["schema_items"]] | |
| # `column_name_word_indices` and `table_name_word_indices` record the word indices of each column and table in `input_words`, whose element is an integer | |
| column_name_word_indices, table_name_word_indices = [], [] | |
| input_words = [sample["text"]] | |
| for table_id, table_name in enumerate(table_names): | |
| input_words.append("|") | |
| input_words.append(table_name) | |
| table_name_word_indices.append(len(input_words) - 1) | |
| input_words.append(":") | |
| for column_name in column_names[table_id]: | |
| input_words.append(column_name) | |
| column_name_word_indices.append(len(input_words) - 1) | |
| input_words.append(",") | |
| # remove the last "," | |
| input_words = input_words[:-1] | |
| tokenized_inputs = tokenizer( | |
| input_words, | |
| return_tensors="pt", | |
| is_split_into_words = True, | |
| padding = "max_length", | |
| max_length = 512, | |
| truncation = True | |
| ) | |
| # after tokenizing, one table name or column name may be splitted into multiple tokens (i.e., sub-words) | |
| # `column_name_token_indices` and `table_name_token_indices` records the token indices of each column and table in `input_ids`, whose element is a list of integer | |
| column_name_token_indices, table_name_token_indices = [], [] | |
| word_indices = tokenized_inputs.word_ids(batch_index = 0) | |
| # obtain token indices of each column in `input_ids` | |
| for column_name_word_index in column_name_word_indices: | |
| column_name_token_indices.append([token_id for token_id, word_index in enumerate(word_indices) if column_name_word_index == word_index]) | |
| # obtain token indices of each table in `input_ids` | |
| for table_name_word_index in table_name_word_indices: | |
| table_name_token_indices.append([token_id for token_id, word_index in enumerate(word_indices) if table_name_word_index == word_index]) | |
| encoder_input_ids = tokenized_inputs["input_ids"] | |
| encoder_input_attention_mask = tokenized_inputs["attention_mask"] | |
| # print("\n".join(tokenizer.batch_decode(encoder_input_ids, skip_special_tokens = True))) | |
| if torch.cuda.is_available(): | |
| encoder_input_ids = encoder_input_ids.cuda() | |
| encoder_input_attention_mask = encoder_input_attention_mask.cuda() | |
| return encoder_input_ids, encoder_input_attention_mask, \ | |
| column_name_token_indices, table_name_token_indices, column_num_in_each_table | |
| def get_schema(tables_and_columns): | |
| schema_items = [] | |
| table_names = list(dict.fromkeys([t for t, c in tables_and_columns])) | |
| for table_name in table_names: | |
| schema_items.append( | |
| { | |
| "table_name": table_name, | |
| "column_names": [c for t, c in tables_and_columns if t == table_name] | |
| } | |
| ) | |
| return {"schema_items": schema_items} | |
| def get_sequence_length(text, tables_and_columns, tokenizer): | |
| table_names = [t for t, c in tables_and_columns] | |
| # duplicate `table_names` while preserving order | |
| table_names = list(dict.fromkeys(table_names)) | |
| column_names = [] | |
| for table_name in table_names: | |
| column_names.append([c for t, c in tables_and_columns if t == table_name]) | |
| input_words = [text] | |
| for table_id, table_name in enumerate(table_names): | |
| input_words.append("|") | |
| input_words.append(table_name) | |
| input_words.append(":") | |
| for column_name in column_names[table_id]: | |
| input_words.append(column_name) | |
| input_words.append(",") | |
| # remove the last "," | |
| input_words = input_words[:-1] | |
| tokenized_inputs = tokenizer(input_words, is_split_into_words = True) | |
| return len(tokenized_inputs["input_ids"]) | |
| # handle extremely long schema sequences | |
| def split_sample(sample, tokenizer): | |
| text = sample["text"] | |
| table_names = [] | |
| column_names = [] | |
| for table in sample["schema"]["schema_items"]: | |
| table_names.append(table["table_name"] + " ( " + table["table_comment"] + " ) " \ | |
| if table["table_comment"] != "" else table["table_name"]) | |
| column_names.append([column_name + " ( " + column_comment + " ) " \ | |
| if column_comment != "" else column_name \ | |
| for column_name, column_comment in zip(table["column_names"], table["column_comments"])]) | |
| splitted_samples = [] | |
| recorded_tables_and_columns = [] | |
| for table_idx, table_name in enumerate(table_names): | |
| for column_name in column_names[table_idx]: | |
| if get_sequence_length(text, recorded_tables_and_columns + [[table_name, column_name]], tokenizer) < 500: | |
| recorded_tables_and_columns.append([table_name, column_name]) | |
| else: | |
| splitted_samples.append( | |
| { | |
| "text": text, | |
| "schema": get_schema(recorded_tables_and_columns) | |
| } | |
| ) | |
| recorded_tables_and_columns = [[table_name, column_name]] | |
| splitted_samples.append( | |
| { | |
| "text": text, | |
| "schema": get_schema(recorded_tables_and_columns) | |
| } | |
| ) | |
| return splitted_samples | |
| def merge_pred_results(sample, pred_results): | |
| # table_names = [table["table_name"] for table in sample["schema"]["schema_items"]] | |
| # column_names = [table["column_names"] for table in sample["schema"]["schema_items"]] | |
| table_names = [] | |
| column_names = [] | |
| for table in sample["schema"]["schema_items"]: | |
| table_names.append(table["table_name"] + " ( " + table["table_comment"] + " ) " \ | |
| if table["table_comment"] != "" else table["table_name"]) | |
| column_names.append([column_name + " ( " + column_comment + " ) " \ | |
| if column_comment != "" else column_name \ | |
| for column_name, column_comment in zip(table["column_names"], table["column_comments"])]) | |
| merged_results = [] | |
| for table_id, table_name in enumerate(table_names): | |
| table_prob = 0 | |
| column_probs = [] | |
| for result_dict in pred_results: | |
| if table_name in result_dict: | |
| if table_prob < result_dict[table_name]["table_prob"]: | |
| table_prob = result_dict[table_name]["table_prob"] | |
| column_probs += result_dict[table_name]["column_probs"] | |
| merged_results.append( | |
| { | |
| "table_name": table_name, | |
| "table_prob": table_prob, | |
| "column_names": column_names[table_id], | |
| "column_probs": column_probs | |
| } | |
| ) | |
| return merged_results | |
| def filter_schema(data, sic, num_top_k_tables = 5, num_top_k_columns = 5): | |
| filtered_schema = dict() | |
| filtered_matched_contents = dict() | |
| filtered_schema["schema_items"] = [] | |
| filtered_schema["foreign_keys"] = [] | |
| table_names = [table["table_name"] for table in data["schema"]["schema_items"]] | |
| table_comments = [table["table_comment"] for table in data["schema"]["schema_items"]] | |
| column_names = [table["column_names"] for table in data["schema"]["schema_items"]] | |
| column_types = [table["column_types"] for table in data["schema"]["schema_items"]] | |
| column_comments = [table["column_comments"] for table in data["schema"]["schema_items"]] | |
| column_contents = [table["column_contents"] for table in data["schema"]["schema_items"]] | |
| pk_indicators = [table["pk_indicators"] for table in data["schema"]["schema_items"]] | |
| # predict scores for each tables and columns | |
| pred_results = sic.predict(data) | |
| # remain top_k1 tables for each database and top_k2 columns for each remained table | |
| table_probs = [pred_result["table_prob"] for pred_result in pred_results] | |
| table_indices = np.argsort(-np.array(table_probs), kind="stable")[:num_top_k_tables].tolist() | |
| for table_idx in table_indices: | |
| column_probs = pred_results[table_idx]["column_probs"] | |
| column_indices = np.argsort(-np.array(column_probs), kind="stable")[:num_top_k_columns].tolist() | |
| filtered_schema["schema_items"].append( | |
| { | |
| "table_name": table_names[table_idx], | |
| "table_comment": table_comments[table_idx], | |
| "column_names": [column_names[table_idx][column_idx] for column_idx in column_indices], | |
| "column_types": [column_types[table_idx][column_idx] for column_idx in column_indices], | |
| "column_comments": [column_comments[table_idx][column_idx] for column_idx in column_indices], | |
| "column_contents": [column_contents[table_idx][column_idx] for column_idx in column_indices], | |
| "pk_indicators": [pk_indicators[table_idx][column_idx] for column_idx in column_indices] | |
| } | |
| ) | |
| # extract matched contents of remained columns | |
| for column_name in [column_names[table_idx][column_idx] for column_idx in column_indices]: | |
| tc_name = "{}.{}".format(table_names[table_idx], column_name) | |
| if tc_name in data["matched_contents"]: | |
| filtered_matched_contents[tc_name] = data["matched_contents"][tc_name] | |
| # extract foreign keys among remianed tables | |
| filtered_table_names = [table_names[table_idx] for table_idx in table_indices] | |
| for foreign_key in data["schema"]["foreign_keys"]: | |
| source_table, source_column, target_table, target_column = foreign_key | |
| if source_table in filtered_table_names and target_table in filtered_table_names: | |
| filtered_schema["foreign_keys"].append(foreign_key) | |
| # replace the old schema with the filtered schema | |
| data["schema"] = filtered_schema | |
| # replace the old matched contents with the filtered matched contents | |
| data["matched_contents"] = filtered_matched_contents | |
| return data | |
| def lista_contains_listb(lista, listb): | |
| for b in listb: | |
| if b not in lista: | |
| return 0 | |
| return 1 | |
| class SchemaItemClassifierInference(): | |
| def __init__(self, model_save_path): | |
| set_seed(42) | |
| # Load tokenizer from Hugging Face | |
| self.tokenizer = AutoTokenizer.from_pretrained(model_save_path, add_prefix_space=True) | |
| # Load the model from Hugging Face or local path | |
| self.model = SchemaItemClassifier(model_save_path, "test") | |
| self.model.eval() | |
| # Move model to GPU if available, otherwise stay on CPU | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| self.model = self.model.to(self.device) # Move model to the selected device | |
| def predict_one(self, sample): | |
| encoder_input_ids, encoder_input_attention_mask, column_name_token_indices, \ | |
| table_name_token_indices, column_num_in_each_table = prepare_inputs_and_labels(sample, self.tokenizer) | |
| # Ensure all tensors are moved to the same device as the model | |
| encoder_input_ids = encoder_input_ids.to(self.device) | |
| encoder_input_attention_mask = encoder_input_attention_mask.to(self.device) | |
| with torch.no_grad(): | |
| model_outputs = self.model( | |
| encoder_input_ids, | |
| encoder_input_attention_mask, | |
| [column_name_token_indices], | |
| [table_name_token_indices], | |
| [column_num_in_each_table] | |
| ) | |
| table_logits = model_outputs["batch_table_name_cls_logits"][0] | |
| table_pred_probs = torch.nn.functional.softmax(table_logits, dim=1)[:, 1].cpu().tolist() | |
| column_logits = model_outputs["batch_column_info_cls_logits"][0] | |
| column_pred_probs = torch.nn.functional.softmax(column_logits, dim=1)[:, 1].cpu().tolist() | |
| splitted_column_pred_probs = [] | |
| # Split predicted column probs into each table | |
| for table_id, column_num in enumerate(column_num_in_each_table): | |
| splitted_column_pred_probs.append(column_pred_probs[sum(column_num_in_each_table[:table_id]): | |
| sum(column_num_in_each_table[:table_id]) + column_num]) | |
| column_pred_probs = splitted_column_pred_probs | |
| result_dict = dict() | |
| for table_idx, table in enumerate(sample["schema"]["schema_items"]): | |
| result_dict[table["table_name"]] = { | |
| "table_name": table["table_name"], | |
| "table_prob": table_pred_probs[table_idx], | |
| "column_names": table["column_names"], | |
| "column_probs": column_pred_probs[table_idx], | |
| } | |
| return result_dict | |
| def predict(self, test_sample): | |
| splitted_samples = split_sample(test_sample, self.tokenizer) | |
| pred_results = [] | |
| for splitted_sample in splitted_samples: | |
| pred_results.append(self.predict_one(splitted_sample)) | |
| return merge_pred_results(test_sample, pred_results) | |
| def evaluate_coverage(self, dataset): | |
| max_k = 100 | |
| total_num_for_table_coverage, total_num_for_column_coverage = 0, 0 | |
| table_coverage_results = [0]*max_k | |
| column_coverage_results = [0]*max_k | |
| for data in dataset: | |
| indices_of_used_tables = [idx for idx, label in enumerate(data["table_labels"]) if label == 1] | |
| pred_results = sic.predict(data) | |
| # print(pred_results) | |
| table_probs = [res["table_prob"] for res in pred_results] | |
| for k in range(max_k): | |
| indices_of_top_k_tables = np.argsort(-np.array(table_probs), kind="stable")[:k+1].tolist() | |
| if lista_contains_listb(indices_of_top_k_tables, indices_of_used_tables): | |
| table_coverage_results[k] += 1 | |
| total_num_for_table_coverage += 1 | |
| for table_idx in range(len(data["table_labels"])): | |
| indices_of_used_columns = [idx for idx, label in enumerate(data["column_labels"][table_idx]) if label == 1] | |
| if len(indices_of_used_columns) == 0: | |
| continue | |
| column_probs = pred_results[table_idx]["column_probs"] | |
| for k in range(max_k): | |
| indices_of_top_k_columns = np.argsort(-np.array(column_probs), kind="stable")[:k+1].tolist() | |
| if lista_contains_listb(indices_of_top_k_columns, indices_of_used_columns): | |
| column_coverage_results[k] += 1 | |
| total_num_for_column_coverage += 1 | |
| indices_of_top_10_columns = np.argsort(-np.array(column_probs), kind="stable")[:10].tolist() | |
| if lista_contains_listb(indices_of_top_10_columns, indices_of_used_columns) == 0: | |
| print(pred_results[table_idx]) | |
| print(data["column_labels"][table_idx]) | |
| print(data["question"]) | |
| print(total_num_for_table_coverage) | |
| print(table_coverage_results) | |
| print(total_num_for_column_coverage) | |
| print(column_coverage_results) | |
| if __name__ == "__main__": | |
| # dataset_name = "bird_with_evidence" | |
| # dataset_name = "bird" | |
| dataset_name = "spider" | |
| sic = SchemaItemClassifierInference("sic_ckpts/sic_{}".format(dataset_name)) | |
| import json | |
| dataset = json.load(open("./data/sft_eval_{}_text2sql.json".format(dataset_name))) | |
| sic.evaluate_coverage(dataset) | |