Spaces:
Paused
Paused
Commit
·
b053c71
1
Parent(s):
b5be522
update token
Browse files
app.py
CHANGED
|
@@ -65,34 +65,76 @@
|
|
| 65 |
|
| 66 |
|
| 67 |
import streamlit as st
|
| 68 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
from langdetect import detect
|
| 70 |
from utils.translate_utils import translate_zh_to_en
|
| 71 |
from utils.db_utils import add_a_record
|
| 72 |
from langdetect.lang_detect_exception import LangDetectException
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
| 77 |
-
self.model = AutoModelForSequenceClassification.from_pretrained(model_name, use_auth_token=True)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
outputs = self.model(**inputs)
|
| 82 |
return outputs.logits
|
| 83 |
|
|
|
|
|
|
|
| 84 |
class ChatBot:
|
| 85 |
def __init__(self):
|
|
|
|
| 86 |
model_name = "Roxanne-WANG/LangSQL"
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
return prediction
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
text2sql_bot = ChatBot()
|
| 94 |
-
baidu_api_token = None
|
| 95 |
|
|
|
|
| 96 |
db_schemas = {
|
| 97 |
"singer": """
|
| 98 |
CREATE TABLE "singer" (
|
|
@@ -114,30 +156,31 @@ db_schemas = {
|
|
| 114 |
FOREIGN KEY ("Singer_ID") REFERENCES "singer"("Singer_ID")
|
| 115 |
);
|
| 116 |
""",
|
|
|
|
| 117 |
}
|
| 118 |
|
| 119 |
-
# Streamlit
|
| 120 |
st.title("Text-to-SQL Chatbot")
|
| 121 |
st.sidebar.header("Select a Database")
|
| 122 |
-
|
| 123 |
selected_db = st.sidebar.selectbox("Choose a database:", list(db_schemas.keys()))
|
| 124 |
-
|
| 125 |
st.sidebar.text_area("Database Schema", db_schemas[selected_db], height=600)
|
| 126 |
|
|
|
|
| 127 |
question = st.text_input("Enter your question:")
|
| 128 |
db_id = selected_db
|
| 129 |
|
| 130 |
if question:
|
|
|
|
| 131 |
add_a_record(question, db_id)
|
| 132 |
|
| 133 |
try:
|
| 134 |
-
|
| 135 |
-
|
| 136 |
question = translate_zh_to_en(question, baidu_api_token)
|
| 137 |
-
print("After translation:", question)
|
| 138 |
except LangDetectException as e:
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
|
|
|
| 142 |
st.write(f"**Database:** {db_id}")
|
| 143 |
-
st.write(f"**
|
|
|
|
| 65 |
|
| 66 |
|
| 67 |
import streamlit as st
|
| 68 |
+
from transformers import (
|
| 69 |
+
AutoTokenizer,
|
| 70 |
+
AutoModelForSequenceClassification,
|
| 71 |
+
logging as hf_logging
|
| 72 |
+
)
|
| 73 |
from langdetect import detect
|
| 74 |
from utils.translate_utils import translate_zh_to_en
|
| 75 |
from utils.db_utils import add_a_record
|
| 76 |
from langdetect.lang_detect_exception import LangDetectException
|
| 77 |
+
import os
|
| 78 |
|
| 79 |
+
# Suppress excessive warnings from Hugging Face transformers library
|
| 80 |
+
hf_logging.set_verbosity_error()
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# SchemaItemClassifierInference class for loading the Hugging Face model
|
| 83 |
+
class SchemaItemClassifierInference:
|
| 84 |
+
def __init__(self, model_name: str, token=None):
|
| 85 |
+
"""
|
| 86 |
+
model_name: Hugging Face repository path, e.g., "Roxanne-WANG/LangSQL"
|
| 87 |
+
token: Authentication token for Hugging Face (if the model is private)
|
| 88 |
+
"""
|
| 89 |
+
# Load the tokenizer and model from Hugging Face, trust remote code if needed
|
| 90 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 91 |
+
model_name,
|
| 92 |
+
use_auth_token=token, # Pass the token for accessing private models
|
| 93 |
+
trust_remote_code=True # Trust custom model code from Hugging Face repo
|
| 94 |
+
)
|
| 95 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 96 |
+
model_name,
|
| 97 |
+
use_auth_token=token,
|
| 98 |
+
trust_remote_code=True
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
def predict(self, text: str):
|
| 102 |
+
# Tokenize the input text and get predictions from the model
|
| 103 |
+
inputs = self.tokenizer(
|
| 104 |
+
text,
|
| 105 |
+
return_tensors="pt",
|
| 106 |
+
padding=True,
|
| 107 |
+
truncation=True
|
| 108 |
+
)
|
| 109 |
outputs = self.model(**inputs)
|
| 110 |
return outputs.logits
|
| 111 |
|
| 112 |
+
|
| 113 |
+
# ChatBot class that interacts with SchemaItemClassifierInference
|
| 114 |
class ChatBot:
|
| 115 |
def __init__(self):
|
| 116 |
+
# Specify the Hugging Face model name (replace with your model's path)
|
| 117 |
model_name = "Roxanne-WANG/LangSQL"
|
| 118 |
+
hf_token = os.getenv('HF_TOKEN') # Get token from environment variables
|
| 119 |
+
|
| 120 |
+
if hf_token is None:
|
| 121 |
+
raise ValueError("Hugging Face token is required. Please set HF_TOKEN.")
|
| 122 |
|
| 123 |
+
# Initialize the schema item classifier with Hugging Face token
|
| 124 |
+
self.sic = SchemaItemClassifierInference(model_name, token=hf_token)
|
|
|
|
| 125 |
|
| 126 |
+
def get_response(self, question: str, db_id: str):
|
| 127 |
+
# Get the model's prediction (logits) for the input question
|
| 128 |
+
logits = self.sic.predict(question)
|
| 129 |
+
# For now, return logits as a placeholder for the actual SQL query
|
| 130 |
+
return logits
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# -------- Streamlit Web Application --------
|
| 134 |
text2sql_bot = ChatBot()
|
| 135 |
+
baidu_api_token = None # Your Baidu API token (if needed for translation)
|
| 136 |
|
| 137 |
+
# Define some database schemas for demonstration purposes
|
| 138 |
db_schemas = {
|
| 139 |
"singer": """
|
| 140 |
CREATE TABLE "singer" (
|
|
|
|
| 156 |
FOREIGN KEY ("Singer_ID") REFERENCES "singer"("Singer_ID")
|
| 157 |
);
|
| 158 |
""",
|
| 159 |
+
# More schemas can be added here
|
| 160 |
}
|
| 161 |
|
| 162 |
+
# Streamlit interface
|
| 163 |
st.title("Text-to-SQL Chatbot")
|
| 164 |
st.sidebar.header("Select a Database")
|
|
|
|
| 165 |
selected_db = st.sidebar.selectbox("Choose a database:", list(db_schemas.keys()))
|
|
|
|
| 166 |
st.sidebar.text_area("Database Schema", db_schemas[selected_db], height=600)
|
| 167 |
|
| 168 |
+
# Get user input for the question
|
| 169 |
question = st.text_input("Enter your question:")
|
| 170 |
db_id = selected_db
|
| 171 |
|
| 172 |
if question:
|
| 173 |
+
# Store the question in the database (or perform any additional processing)
|
| 174 |
add_a_record(question, db_id)
|
| 175 |
|
| 176 |
try:
|
| 177 |
+
# If translation is required, handle it here
|
| 178 |
+
if baidu_api_token and detect(question) != "en":
|
| 179 |
question = translate_zh_to_en(question, baidu_api_token)
|
|
|
|
| 180 |
except LangDetectException as e:
|
| 181 |
+
st.warning(f"Language detection error: {e}")
|
| 182 |
|
| 183 |
+
# Get the model's response (in this case, SQL query or logits)
|
| 184 |
+
response = text2sql_bot.get_response(question, db_id)
|
| 185 |
st.write(f"**Database:** {db_id}")
|
| 186 |
+
st.write(f"**Model logits (Example Output):** {response}")
|