Update app.py
Browse filesPseudocode
Add sliders for resolution and num_gauss to the Gradio interface.
Modify the preprocess function to accept resolution as a parameter.
Modify the reconstruct_and_export function to accept num_gauss as a parameter.
Update the Gradio interface to include the new sliders and pass their values to the respective functions
app.py
CHANGED
|
@@ -1,18 +1,3 @@
|
|
| 1 |
-
import sys
|
| 2 |
-
import spaces
|
| 3 |
-
sys.path.append("flash3d") # Add the flash3d directory to the system path for importing local modules
|
| 4 |
-
|
| 5 |
-
from omegaconf import OmegaConf
|
| 6 |
-
import gradio as gr
|
| 7 |
-
import torch
|
| 8 |
-
import torchvision.transforms as TT
|
| 9 |
-
import torchvision.transforms.functional as TTF
|
| 10 |
-
from huggingface_hub import hf_hub_download
|
| 11 |
-
import numpy as np
|
| 12 |
-
|
| 13 |
-
from networks.gaussian_predictor import GaussianPredictor
|
| 14 |
-
from util.vis3d import save_ply
|
| 15 |
-
|
| 16 |
def main():
|
| 17 |
print("[INFO] Starting main function...")
|
| 18 |
if torch.cuda.is_available():
|
|
@@ -32,12 +17,8 @@ def main():
|
|
| 32 |
|
| 33 |
print("[INFO] Initializing GaussianPredictor model...")
|
| 34 |
model = GaussianPredictor(cfg)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
model.to(device)
|
| 38 |
-
except Exception as e:
|
| 39 |
-
print(f"[ERROR] Failed to set device: {e}")
|
| 40 |
-
raise
|
| 41 |
|
| 42 |
print("[INFO] Loading model weights...")
|
| 43 |
model.load_model(model_path)
|
|
@@ -52,31 +33,23 @@ def main():
|
|
| 52 |
raise gr.Error("No image uploaded!")
|
| 53 |
print("[INFO] Input image is valid.")
|
| 54 |
|
| 55 |
-
def preprocess(image,
|
| 56 |
print("[DEBUG] Preprocessing image...")
|
| 57 |
-
image = TTF.resize(image, (
|
| 58 |
-
pad_border_fn = TT.Pad((padding_value, padding_value))
|
| 59 |
image = pad_border_fn(image)
|
| 60 |
print("[INFO] Image preprocessing complete.")
|
| 61 |
return image
|
| 62 |
|
| 63 |
@spaces.GPU(duration=120)
|
| 64 |
-
def reconstruct_and_export(image, num_gauss
|
| 65 |
print("[DEBUG] Starting reconstruction and export...")
|
| 66 |
image = to_tensor(image).to(device).unsqueeze(0)
|
| 67 |
inputs = {("color_aug", 0, 0): image}
|
| 68 |
-
|
| 69 |
print("[INFO] Passing image through the model...")
|
| 70 |
outputs = model(inputs)
|
| 71 |
-
|
| 72 |
-
gauss_means = outputs[('gauss_means',0, 0)]
|
| 73 |
-
if gauss_means.shape[0] % num_gauss != 0:
|
| 74 |
-
raise ValueError(f"Shape mismatch: cannot divide axis of length {gauss_means.shape[0]} into chunks of {num_gauss}")
|
| 75 |
-
|
| 76 |
print(f"[INFO] Saving output to {ply_out_path}...")
|
| 77 |
-
save_ply(outputs, ply_out_path, num_gauss=num_gauss
|
| 78 |
print("[INFO] Reconstruction and export complete.")
|
| 79 |
-
|
| 80 |
return ply_out_path
|
| 81 |
|
| 82 |
ply_out_path = f'./mesh.ply'
|
|
@@ -94,15 +67,9 @@ def main():
|
|
| 94 |
with gr.Column(scale=1):
|
| 95 |
with gr.Row():
|
| 96 |
input_image = gr.Image(label="Input Image", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image")
|
| 97 |
-
with gr.Row():
|
| 98 |
-
num_gauss = gr.Slider(minimum=1, maximum=20, step=1, label="Number of Gaussians per Pixel", value=10)
|
| 99 |
-
padding_value = gr.Slider(minimum=0, maximum=128, step=8, label="Padding Amount for Output Processing", value=32)
|
| 100 |
-
max_sh_degree = gr.Slider(minimum=1, maximum=10, step=1, label="Max SH Degree", value=1)
|
| 101 |
-
scaling_modifier = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="Scaling Modifier", value=1.0)
|
| 102 |
with gr.Row():
|
| 103 |
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
| 104 |
-
|
| 105 |
-
with gr.Row(variant="panel"):
|
| 106 |
gr.Examples(
|
| 107 |
examples=[
|
| 108 |
'./demo_examples/bedroom_01.png',
|
|
@@ -117,22 +84,23 @@ def main():
|
|
| 117 |
label="Examples",
|
| 118 |
examples_per_page=20,
|
| 119 |
)
|
| 120 |
-
|
| 121 |
with gr.Row():
|
| 122 |
processed_image = gr.Image(label="Processed Image", interactive=False)
|
| 123 |
-
|
| 124 |
with gr.Column(scale=2):
|
| 125 |
with gr.Row():
|
| 126 |
with gr.Tab("Reconstruction"):
|
| 127 |
output_model = gr.Model3D(height=512, label="Output Model", interactive=False)
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
| 130 |
fn=preprocess,
|
| 131 |
-
inputs=[input_image,
|
| 132 |
outputs=[processed_image],
|
| 133 |
).success(
|
| 134 |
fn=reconstruct_and_export,
|
| 135 |
-
inputs=[processed_image, num_gauss
|
| 136 |
outputs=[output_model],
|
| 137 |
)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
def main():
|
| 2 |
print("[INFO] Starting main function...")
|
| 3 |
if torch.cuda.is_available():
|
|
|
|
| 17 |
|
| 18 |
print("[INFO] Initializing GaussianPredictor model...")
|
| 19 |
model = GaussianPredictor(cfg)
|
| 20 |
+
device = torch.device(device)
|
| 21 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
print("[INFO] Loading model weights...")
|
| 24 |
model.load_model(model_path)
|
|
|
|
| 33 |
raise gr.Error("No image uploaded!")
|
| 34 |
print("[INFO] Input image is valid.")
|
| 35 |
|
| 36 |
+
def preprocess(image, resolution):
|
| 37 |
print("[DEBUG] Preprocessing image...")
|
| 38 |
+
image = TTF.resize(image, (resolution, resolution), interpolation=TT.InterpolationMode.BICUBIC)
|
|
|
|
| 39 |
image = pad_border_fn(image)
|
| 40 |
print("[INFO] Image preprocessing complete.")
|
| 41 |
return image
|
| 42 |
|
| 43 |
@spaces.GPU(duration=120)
|
| 44 |
+
def reconstruct_and_export(image, num_gauss):
|
| 45 |
print("[DEBUG] Starting reconstruction and export...")
|
| 46 |
image = to_tensor(image).to(device).unsqueeze(0)
|
| 47 |
inputs = {("color_aug", 0, 0): image}
|
|
|
|
| 48 |
print("[INFO] Passing image through the model...")
|
| 49 |
outputs = model(inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
print(f"[INFO] Saving output to {ply_out_path}...")
|
| 51 |
+
save_ply(outputs, ply_out_path, num_gauss=num_gauss)
|
| 52 |
print("[INFO] Reconstruction and export complete.")
|
|
|
|
| 53 |
return ply_out_path
|
| 54 |
|
| 55 |
ply_out_path = f'./mesh.ply'
|
|
|
|
| 67 |
with gr.Column(scale=1):
|
| 68 |
with gr.Row():
|
| 69 |
input_image = gr.Image(label="Input Image", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
with gr.Row():
|
| 71 |
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
| 72 |
+
with gr.Row(variant="panel"):
|
|
|
|
| 73 |
gr.Examples(
|
| 74 |
examples=[
|
| 75 |
'./demo_examples/bedroom_01.png',
|
|
|
|
| 84 |
label="Examples",
|
| 85 |
examples_per_page=20,
|
| 86 |
)
|
|
|
|
| 87 |
with gr.Row():
|
| 88 |
processed_image = gr.Image(label="Processed Image", interactive=False)
|
|
|
|
| 89 |
with gr.Column(scale=2):
|
| 90 |
with gr.Row():
|
| 91 |
with gr.Tab("Reconstruction"):
|
| 92 |
output_model = gr.Model3D(height=512, label="Output Model", interactive=False)
|
| 93 |
+
with gr.Row():
|
| 94 |
+
resolution = gr.Slider(minimum=256, maximum=1024, step=64, label="Image Resolution", value=cfg.dataset.height)
|
| 95 |
+
num_gauss = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Gaussian Components", value=2)
|
| 96 |
|
| 97 |
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
| 98 |
fn=preprocess,
|
| 99 |
+
inputs=[input_image, resolution],
|
| 100 |
outputs=[processed_image],
|
| 101 |
).success(
|
| 102 |
fn=reconstruct_and_export,
|
| 103 |
+
inputs=[processed_image, num_gauss],
|
| 104 |
outputs=[output_model],
|
| 105 |
)
|
| 106 |
|