Spaces:
Build error
Build error
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """TODO: Add a description here.""" | |
| from typing import Dict, List, Tuple, Literal | |
| import evaluate | |
| import datasets | |
| import numpy as np | |
| from seametrics.panoptic import PanopticQuality | |
| from seametrics.payload import Payload | |
| _CITATION = """\ | |
| @inproceedings{DBLP:conf/cvpr/KirillovHGRD19, | |
| author = {Alexander Kirillov and | |
| Kaiming He and | |
| Ross B. Girshick and | |
| Carsten Rother and | |
| Piotr Doll{\'{a}}r}, | |
| title = {Panoptic Segmentation}, | |
| booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} | |
| 2019, Long Beach, CA, USA, June 16-20, 2019}, | |
| pages = {9404--9413}, | |
| publisher = {Computer Vision Foundation / {IEEE}}, | |
| year = {2019}, | |
| url = {http://openaccess.thecvf.com/content\_CVPR\_2019/html/Kirillov\_Panoptic\_Segmentation\_CVPR\_2019\_paper.html | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| This evaluation metric calculates Panoptic Quality (PQ) for panoptic segmentation masks. | |
| """ | |
| _KWARGS_DESCRIPTION = """ | |
| Calculates PQ-score given predicted and ground truth panoptic segmentation masks. | |
| Args: | |
| predictions: a 4-d array of shape (batch_size, img_height, img_width, 2). | |
| The last dimension should hold the category index at position 0, and | |
| the instance ID at position 1. | |
| references: a 4-d array of shape (batch_size, img_height, img_width, 2). | |
| The last dimension should hold the category index at position 0, and | |
| the instance ID at position 1. | |
| Returns: | |
| A dictionary containing PQ, RQ, SQ scores for key "scores" and | |
| FP, TP, FN, IOU sum numbers for key "numbers". | |
| Examples: | |
| >>> import evaluate | |
| >>> from seametrics.payload.processor import PayloadProcessor | |
| >>> MODEL_FIELD = ["maskformer-27k-100ep"] | |
| >>> payload = PayloadProcessor("SAILING_PANOPTIC_DATASET_QA", | |
| >>> gt_field="ground_truth_det", | |
| >>> models=MODEL_FIELD, | |
| >>> sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"], | |
| >>> excluded_classes=[""]).payload | |
| >>> module = evaluate.load("SEA-AI/PanopticQuality") | |
| >>> module.add_payload(payload, model_name=MODEL_FIELD[0]) | |
| >>> module.compute() | |
| 100%|ββββββββββ| 3/3 [00:03<00:00, 1.30s/it] | |
| Added data ... | |
| Start computing ... | |
| Finished! | |
| """ | |
| class PQMetric(evaluate.Metric): | |
| def __init__( | |
| self, | |
| label2id: Dict[str, int] = None, | |
| stuff: List[str] = None, | |
| per_class: bool = True, | |
| split_sq_rq: bool = True, | |
| area_rng: List[Tuple[float]] = [(0, 1e5**2), | |
| (0**2, 6**2), | |
| (6**2, 12**2), | |
| (12**2, 1e5**2)], | |
| method: Literal["iou", "hungarian"] = "hungarian", | |
| device: str = None, | |
| class_agnostic: bool = False, | |
| **kwargs | |
| ): | |
| super().__init__(**kwargs) | |
| if class_agnostic: | |
| DEFAULT_LABEL2ID = {'WATER': 0, | |
| 'SKY': 1, | |
| 'LAND': 2, | |
| 'MOTORBOAT': 3, | |
| 'FAR_AWAY_OBJECT': 3, | |
| 'SAILING_BOAT_WITH_CLOSED_SAILS': 3, | |
| 'SHIP': 3, | |
| 'WATERCRAFT': 3, | |
| 'SPHERICAL_BUOY': 3, | |
| 'CONSTRUCTION': 4, | |
| 'FLOTSAM': 3, | |
| 'SAILING_BOAT_WITH_OPEN_SAILS': 3, | |
| 'CONTAINER': 3, | |
| 'PILLAR_BUOY': 3, | |
| 'AERIAL_ANIMAL': 3, | |
| 'HUMAN_IN_WATER': 3, | |
| 'OWN_BOAT': 5, | |
| 'WOODEN_LOG': 3, | |
| 'MARITIME_ANIMAL': 3} | |
| else: | |
| DEFAULT_LABEL2ID = {'WATER': 0, | |
| 'SKY': 1, | |
| 'LAND': 2, | |
| 'MOTORBOAT': 3, | |
| 'FAR_AWAY_OBJECT': 4, | |
| 'SAILING_BOAT_WITH_CLOSED_SAILS': 5, | |
| 'SHIP': 6, | |
| 'WATERCRAFT': 7, | |
| 'SPHERICAL_BUOY': 8, | |
| 'CONSTRUCTION': 9, | |
| 'FLOTSAM': 10, | |
| 'SAILING_BOAT_WITH_OPEN_SAILS': 11, | |
| 'CONTAINER': 12, | |
| 'PILLAR_BUOY': 13, | |
| 'AERIAL_ANIMAL': 14, | |
| 'HUMAN_IN_WATER': 15, | |
| 'OWN_BOAT': 16, | |
| 'WOODEN_LOG': 17, | |
| 'MARITIME_ANIMAL': 18} | |
| DEFAULT_STUFF = ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"] | |
| self.label2id = label2id if label2id is not None else DEFAULT_LABEL2ID | |
| self.id2label = {id: label for label, id in self.label2id.items()} | |
| self.stuff = stuff if stuff is not None else DEFAULT_STUFF | |
| self.per_class = per_class | |
| self.split_sq_rq = split_sq_rq | |
| self.pq_metric = PanopticQuality( | |
| things=set([self.label2id[label] for label in self.label2id.keys() if label not in self.stuff]), | |
| stuffs=set([self.label2id[label] for label in self.label2id.keys() if label in self.stuff]), | |
| return_per_class=per_class, | |
| return_sq_and_rq=split_sq_rq, | |
| areas=area_rng, | |
| device=device, | |
| method=method | |
| ) | |
| self.cont_to_cat = {label:key for key, label in self.pq_metric.metric.cat_id_to_continuous_id.items()} | |
| def _info(self): | |
| return evaluate.MetricInfo( | |
| # This is the description that will appear on the modules page. | |
| module_type="metric", | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| # This defines the format of each prediction and reference | |
| features=datasets.Features( | |
| { | |
| "predictions": datasets.Sequence( | |
| datasets.Sequence( | |
| datasets.Sequence( | |
| datasets.Sequence(datasets.Value("float")) | |
| ) | |
| ), | |
| ), | |
| "references": datasets.Sequence( # batch | |
| datasets.Sequence( # img height | |
| datasets.Sequence( # img width | |
| datasets.Sequence(datasets.Value("float")) # 2 | |
| ) | |
| ), | |
| ), | |
| } | |
| ), | |
| # Additional links to the codebase or references | |
| codebase_urls=[ | |
| "https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html" | |
| ], | |
| ) | |
| def add(self, *, prediction, reference, **kwargs): | |
| """Adds a batch of predictions and references to the metric""" | |
| # in case the inputs are lists, convert them to numpy arrays | |
| self.pq_metric.update(prediction, reference) | |
| # does not impact the metric, but is required for the interface x_x | |
| super(evaluate.Metric, self).add( | |
| prediction=self._postprocess(prediction), | |
| references=self._postprocess(reference), | |
| **kwargs | |
| ) | |
| def _compute(self, *, predictions, references, **kwargs): | |
| """Called within the evaluate.Metric.compute() method""" | |
| tp = self.pq_metric.metric.true_positives.clone().cpu() # shape : (area_rngs, n_classes (sorted things + sorted stuffs)) | |
| fp = self.pq_metric.metric.false_positives.clone().cpu() | |
| fn = self.pq_metric.metric.false_negatives.clone().cpu() | |
| iou = self.pq_metric.metric.iou_sum.clone().cpu() | |
| # compute scores | |
| result = self.pq_metric.compute().cpu() # shape : (area_rngs, n_classes (sorted things + sorted stuffs), scores (pq, sq, rq)) | |
| result_dict = dict() | |
| if self.per_class: | |
| if not self.split_sq_rq: | |
| result = result.unsqueeze(0) | |
| result_dict["scores"] = {self.id2label[numeric_label]: result[:,:, i].numpy() \ | |
| for i, numeric_label in self.cont_to_cat.items()} | |
| result_dict["scores"].update({"ALL": result.mean(dim=-1).numpy()}) | |
| result_dict["numbers"] = {self.id2label[numeric_label]: np.stack([tp[:, i].numpy(), fp[:, i].numpy(), fn[:, i].numpy(), iou[:, i].numpy()])\ | |
| for i, numeric_label in self.cont_to_cat.items()} | |
| result_dict["numbers"].update({"ALL": np.stack([tp.sum(dim=1).numpy(), fp.sum(dim=1).numpy(), fn.sum(dim=1).numpy(), iou.sum(dim=1).numpy()])}) | |
| else: | |
| result_dict["scores"] = {"ALL": result.numpy() if self.split_sq_rq else (result.numpy()[np.newaxis, ...] if len(self.pq_metric.get_areas())>1 else result.numpy()[np.newaxis, np.newaxis, ...])} | |
| result_dict["numbers"] = {"ALL": np.stack([tp.sum(dim=-1).numpy(), fp.sum(dim=-1).numpy(), fn.sum(dim=-1).numpy(), iou.sum(dim=-1).numpy()])} | |
| return result_dict | |
| def add_payload(self, payload: Payload, model_name: str = None): | |
| """Converts the payload to the format expected by the metric""" | |
| # import only if needed since fiftyone is not a direct dependency | |
| from seametrics.panoptic.utils import payload_to_seg_metric | |
| predictions, references, label2id = payload_to_seg_metric(payload, model_name, self.label2id) | |
| self.label2id = label2id | |
| self.add(prediction=predictions, reference=references) | |
| def _postprocess(self, np_array): | |
| """Converts the numpy arrays to lists for type checking""" | |
| # add fake data to avoid out of memory problem | |
| # only reuqired for interface, not used by metric anyway | |
| return np.zeros((1,1,1,1)).tolist() | |