Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## CSCI4750/5750: homework03 submission
|
| 2 |
+
## load the dataset
|
| 3 |
+
def hw03_derive_MNIST_train_test_data():
|
| 4 |
+
from sklearn.datasets import fetch_openml
|
| 5 |
+
import numpy as np
|
| 6 |
+
mnist = fetch_openml('mnist_784', version=1, as_frame=False)
|
| 7 |
+
X, y = mnist["data"], mnist["target"]
|
| 8 |
+
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
|
| 9 |
+
y_train = y_train.astype(np.int) # convert to int
|
| 10 |
+
y_test = y_test.astype(np.int) # convert to int
|
| 11 |
+
return X_train, X_test, y_train, y_test
|
| 12 |
+
|
| 13 |
+
X_train, X_test, y_train, y_test = hw03_derive_MNIST_train_test_data()
|
| 14 |
+
print("X_train.shape: ", X_train.shape)
|
| 15 |
+
print("X_test.shape: ", X_test.shape)
|
| 16 |
+
print("y_train.shape: ", y_train.shape)
|
| 17 |
+
print("y_test.shape: ", y_test.shape)
|
| 18 |
+
|
| 19 |
+
train_features = X_train
|
| 20 |
+
train_labels = y_train
|
| 21 |
+
test_feature = X_test[0]
|
| 22 |
+
K = 3
|
| 23 |
+
print("train_features: ",train_features.shape)
|
| 24 |
+
print("train_labels: ",train_labels.shape)
|
| 25 |
+
print("test_feature: ",test_feature.shape)
|
| 26 |
+
|
| 27 |
+
# Practice 5: deploy our KNN classifier to web application, with multiple outputs
|
| 28 |
+
|
| 29 |
+
import scipy
|
| 30 |
+
import gradio as gr
|
| 31 |
+
import numpy as np
|
| 32 |
+
import cv2
|
| 33 |
+
import os
|
| 34 |
+
|
| 35 |
+
def get_sample_images(num_images):
|
| 36 |
+
sample_images = []
|
| 37 |
+
for i in range(num_images):
|
| 38 |
+
train_feature = X_train[i]
|
| 39 |
+
train_feature_2d =train_feature.reshape(28,28)
|
| 40 |
+
|
| 41 |
+
# Make it unsigned integers:
|
| 42 |
+
data = train_feature_2d.astype(np.uint8)
|
| 43 |
+
|
| 44 |
+
outdir = "images_folder"
|
| 45 |
+
img_path = os.path.join(outdir, 'local_%05d.png' % (i,))
|
| 46 |
+
if not os.path.exists(outdir):
|
| 47 |
+
os.mkdir(outdir)
|
| 48 |
+
cv2.imwrite(img_path, data)
|
| 49 |
+
|
| 50 |
+
sample_images.append([img_path,int(np.random.choice([7,9,11,13]))]) # ["image path", "K"]
|
| 51 |
+
return sample_images
|
| 52 |
+
|
| 53 |
+
# EXTRA: adapted from https://github.com/ageron/handson-ml2/blob/master/03_classification.ipynb
|
| 54 |
+
def plot_digits(instances, images_per_row=3):
|
| 55 |
+
import matplotlib.pyplot as plt
|
| 56 |
+
import matplotlib as mpl
|
| 57 |
+
size = 28
|
| 58 |
+
images_per_row = min(len(instances), images_per_row)
|
| 59 |
+
# This is equivalent to n_rows = ceil(len(instances) / images_per_row):
|
| 60 |
+
n_rows = (len(instances) - 1) // images_per_row + 1
|
| 61 |
+
|
| 62 |
+
n = len(instances)
|
| 63 |
+
|
| 64 |
+
fig = plt.figure()
|
| 65 |
+
for i in range(len(instances)):
|
| 66 |
+
# Debug, plot figure
|
| 67 |
+
fig.add_subplot(n_rows, images_per_row, i + 1)
|
| 68 |
+
#print(instances[i])
|
| 69 |
+
plt.imshow(instances[i].reshape(size,size), cmap = mpl.cm.binary)
|
| 70 |
+
plt.axis("off")
|
| 71 |
+
plt.title("Neighbor "+str(i+1))
|
| 72 |
+
fig.tight_layout()
|
| 73 |
+
|
| 74 |
+
plt.savefig('results.png', dpi=300)
|
| 75 |
+
return 'results.png'
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
## machine learning classifier
|
| 79 |
+
def KNN_predict(train_features, train_labels, test_feature, K):
|
| 80 |
+
label_record = []
|
| 81 |
+
for i in range(len(train_features)):
|
| 82 |
+
train_point_feature = train_features[i]
|
| 83 |
+
test_point_feature = test_feature
|
| 84 |
+
### (1) calculate distance between test feature and each of training data points
|
| 85 |
+
|
| 86 |
+
# get distance for data point i
|
| 87 |
+
dis = scipy.spatial.distance.euclidean(train_point_feature, test_point_feature)
|
| 88 |
+
|
| 89 |
+
# collect lable for datapoint i
|
| 90 |
+
y = train_labels[i]
|
| 91 |
+
label_record.append((dis, y, train_point_feature))
|
| 92 |
+
|
| 93 |
+
# sort data points by distance
|
| 94 |
+
from operator import itemgetter
|
| 95 |
+
sorted_labels = sorted(label_record,key=itemgetter(0))
|
| 96 |
+
# get major class from top K neighbors
|
| 97 |
+
major_class = []
|
| 98 |
+
neighbor_imgs = []
|
| 99 |
+
for k in range(K):
|
| 100 |
+
major_class.append(sorted_labels[k][1])
|
| 101 |
+
|
| 102 |
+
# at most 15 neighbors for visualization
|
| 103 |
+
if k <15:
|
| 104 |
+
neighbor_feature = sorted_labels[k][2]
|
| 105 |
+
neighbor_imgs.append(neighbor_feature)
|
| 106 |
+
|
| 107 |
+
### get final prediction
|
| 108 |
+
final_prediction = scipy.stats.mode(major_class).mode[0]
|
| 109 |
+
|
| 110 |
+
### get neighbor images and save to local
|
| 111 |
+
neighbor_imgs =np.array(neighbor_imgs)
|
| 112 |
+
image_path = plot_digits(neighbor_imgs, images_per_row=3)
|
| 113 |
+
|
| 114 |
+
return final_prediction, image_path
|
| 115 |
+
|
| 116 |
+
### main function for gradio to call to classify image
|
| 117 |
+
def call_our_KNN(test_image, K=7):
|
| 118 |
+
test_image_flatten = test_image.reshape((-1, 28*28))
|
| 119 |
+
y_pred_each, image_path = KNN_predict(train_features, train_labels, test_image_flatten, K)
|
| 120 |
+
return y_pred_each, image_path
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
### generate several example cases
|
| 124 |
+
sample_images = get_sample_images(10)
|
| 125 |
+
|
| 126 |
+
### configure inputs/outputs
|
| 127 |
+
set_image = gr.inputs.Image(shape=(28, 28), image_mode='L')
|
| 128 |
+
set_K = gr.inputs.Slider(0, 100, default=7)
|
| 129 |
+
|
| 130 |
+
set_label = gr.outputs.Textbox(label="Predicted Digit")
|
| 131 |
+
set_out_images = gr.outputs.Image(label="Closest Neighbors")
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
|
| 135 |
+
interface = gr.Interface(fn=call_our_KNN,
|
| 136 |
+
inputs=[set_image, set_K],
|
| 137 |
+
outputs=[set_label,set_out_images],
|
| 138 |
+
examples_per_page = 2,
|
| 139 |
+
examples = sample_images,
|
| 140 |
+
title="CSCI4750: Digit classification using KNN algorithm",
|
| 141 |
+
description= "Click examples below for a quick demo",
|
| 142 |
+
theme = 'huggingface',
|
| 143 |
+
layout = 'vertical',
|
| 144 |
+
live=True
|
| 145 |
+
)
|
| 146 |
+
interface.launch(debug=True)
|