Update app.py
Browse files
app.py
CHANGED
|
@@ -1,80 +1,80 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import cv2
|
| 4 |
-
import numpy as np
|
| 5 |
-
from ultralytics import YOLO
|
| 6 |
-
import os
|
| 7 |
-
|
| 8 |
-
# Model Initialization
|
| 9 |
-
|
| 10 |
-
model = YOLO(
|
| 11 |
-
|
| 12 |
-
# Adjust the path to your YOLOv11 model
|
| 13 |
-
# Function to detect actions in images
|
| 14 |
-
def detect_action(image_path):
|
| 15 |
-
results = model.predict(source=image_path, conf=0.25, save=False)
|
| 16 |
-
result = results[0]
|
| 17 |
-
detections = [
|
| 18 |
-
(model.names[int(box.cls[0])], float(box.conf[0])) for box in result.boxes
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
# Classify action based on detections
|
| 22 |
-
action_scores = classify_action(detections)
|
| 23 |
-
|
| 24 |
-
return result.plot(), action_scores
|
| 25 |
-
|
| 26 |
-
def classify_action(detections):
|
| 27 |
-
detected_objects = [d[0] for d in detections]
|
| 28 |
-
|
| 29 |
-
action_scores = {
|
| 30 |
-
'Stealing': 0.0,
|
| 31 |
-
'Sneaking': 0.0,
|
| 32 |
-
'Peaking': 0.0,
|
| 33 |
-
'Normal': 0.0
|
| 34 |
-
}
|
| 35 |
-
|
| 36 |
-
if 'person' in detected_objects:
|
| 37 |
-
if any(obj in detected_objects for obj in ['backpack', 'handbag', 'suitcase']):
|
| 38 |
-
action_scores['Stealing'] += 0.4
|
| 39 |
-
if 'refrigerator' in detected_objects:
|
| 40 |
-
action_scores['Stealing'] += 0.3
|
| 41 |
-
if [conf for obj, conf in detections if obj == 'person'][0] < 0.6:
|
| 42 |
-
action_scores['Sneaking'] += 0.5
|
| 43 |
-
if len(detected_objects) <= 2:
|
| 44 |
-
action_scores['Peaking'] += 0.5
|
| 45 |
-
|
| 46 |
-
if not any(score > 0.3 for score in action_scores.values()):
|
| 47 |
-
action_scores['Normal'] = 0.4
|
| 48 |
-
|
| 49 |
-
return action_scores
|
| 50 |
-
|
| 51 |
-
# Streamlit UI
|
| 52 |
-
st.title('Suspicious Activity Detection')
|
| 53 |
-
st.write('Upload an image to detect suspicious activities.')
|
| 54 |
-
|
| 55 |
-
# File uploader
|
| 56 |
-
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
| 57 |
-
if uploaded_file is not None:
|
| 58 |
-
# Read the image
|
| 59 |
-
image = Image.open(uploaded_file)
|
| 60 |
-
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 61 |
-
|
| 62 |
-
# Save the uploaded file for processing
|
| 63 |
-
img_path = "/tmp/uploaded_image.jpg"
|
| 64 |
-
image.save(img_path)
|
| 65 |
-
|
| 66 |
-
# Predict and display results
|
| 67 |
-
st.write("Detecting action...")
|
| 68 |
-
detected_image, action_scores = detect_action(img_path)
|
| 69 |
-
|
| 70 |
-
st.image(detected_image, caption='Detected Image', use_column_width=True)
|
| 71 |
-
|
| 72 |
-
# Display action scores
|
| 73 |
-
st.write("Action Probability Scores:")
|
| 74 |
-
for action, score in action_scores.items():
|
| 75 |
-
st.write(f"{action}: {score:.2%}")
|
| 76 |
-
|
| 77 |
-
# Predict and display the most likely action
|
| 78 |
-
predicted_action = max(action_scores.items(), key=lambda x: x[1])
|
| 79 |
-
st.write(f"Predicted Action: {predicted_action[0]} ({predicted_action[1]:.2%} confidence)")
|
| 80 |
-
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from ultralytics import YOLO
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Model Initialization
|
| 9 |
+
|
| 10 |
+
model = YOLO(https://colab.research.google.com/drive/1IAyIjPN1J_9s5MhJ0uCsccxfcA0WfXl2?authuser=1#scrollTo=bA29p0kfmhlP)
|
| 11 |
+
|
| 12 |
+
# Adjust the path to your YOLOv11 model
|
| 13 |
+
# Function to detect actions in images
|
| 14 |
+
def detect_action(image_path):
|
| 15 |
+
results = model.predict(source=image_path, conf=0.25, save=False)
|
| 16 |
+
result = results[0]
|
| 17 |
+
detections = [
|
| 18 |
+
(model.names[int(box.cls[0])], float(box.conf[0])) for box in result.boxes
|
| 19 |
+
]
|
| 20 |
+
|
| 21 |
+
# Classify action based on detections
|
| 22 |
+
action_scores = classify_action(detections)
|
| 23 |
+
|
| 24 |
+
return result.plot(), action_scores
|
| 25 |
+
|
| 26 |
+
def classify_action(detections):
|
| 27 |
+
detected_objects = [d[0] for d in detections]
|
| 28 |
+
|
| 29 |
+
action_scores = {
|
| 30 |
+
'Stealing': 0.0,
|
| 31 |
+
'Sneaking': 0.0,
|
| 32 |
+
'Peaking': 0.0,
|
| 33 |
+
'Normal': 0.0
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
if 'person' in detected_objects:
|
| 37 |
+
if any(obj in detected_objects for obj in ['backpack', 'handbag', 'suitcase']):
|
| 38 |
+
action_scores['Stealing'] += 0.4
|
| 39 |
+
if 'refrigerator' in detected_objects:
|
| 40 |
+
action_scores['Stealing'] += 0.3
|
| 41 |
+
if [conf for obj, conf in detections if obj == 'person'][0] < 0.6:
|
| 42 |
+
action_scores['Sneaking'] += 0.5
|
| 43 |
+
if len(detected_objects) <= 2:
|
| 44 |
+
action_scores['Peaking'] += 0.5
|
| 45 |
+
|
| 46 |
+
if not any(score > 0.3 for score in action_scores.values()):
|
| 47 |
+
action_scores['Normal'] = 0.4
|
| 48 |
+
|
| 49 |
+
return action_scores
|
| 50 |
+
|
| 51 |
+
# Streamlit UI
|
| 52 |
+
st.title('Suspicious Activity Detection')
|
| 53 |
+
st.write('Upload an image to detect suspicious activities.')
|
| 54 |
+
|
| 55 |
+
# File uploader
|
| 56 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
| 57 |
+
if uploaded_file is not None:
|
| 58 |
+
# Read the image
|
| 59 |
+
image = Image.open(uploaded_file)
|
| 60 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 61 |
+
|
| 62 |
+
# Save the uploaded file for processing
|
| 63 |
+
img_path = "/tmp/uploaded_image.jpg"
|
| 64 |
+
image.save(img_path)
|
| 65 |
+
|
| 66 |
+
# Predict and display results
|
| 67 |
+
st.write("Detecting action...")
|
| 68 |
+
detected_image, action_scores = detect_action(img_path)
|
| 69 |
+
|
| 70 |
+
st.image(detected_image, caption='Detected Image', use_column_width=True)
|
| 71 |
+
|
| 72 |
+
# Display action scores
|
| 73 |
+
st.write("Action Probability Scores:")
|
| 74 |
+
for action, score in action_scores.items():
|
| 75 |
+
st.write(f"{action}: {score:.2%}")
|
| 76 |
+
|
| 77 |
+
# Predict and display the most likely action
|
| 78 |
+
predicted_action = max(action_scores.items(), key=lambda x: x[1])
|
| 79 |
+
st.write(f"Predicted Action: {predicted_action[0]} ({predicted_action[1]:.2%} confidence)")
|
| 80 |
+
|