|  | import gradio as gr | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | 
					
						
						|  | from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | 
					
						
						|  | from src.unet_hacked_tryon import UNet2DConditionModel | 
					
						
						|  | from transformers import ( | 
					
						
						|  | CLIPImageProcessor, | 
					
						
						|  | CLIPVisionModelWithProjection, | 
					
						
						|  | CLIPTextModel, | 
					
						
						|  | CLIPTextModelWithProjection, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers import DDPMScheduler,AutoencoderKL | 
					
						
						|  | from typing import List | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import os | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  | import spaces | 
					
						
						|  | import numpy as np | 
					
						
						|  | from utils_mask import get_mask_location | 
					
						
						|  | from torchvision import transforms | 
					
						
						|  | import apply_net | 
					
						
						|  | from preprocess.humanparsing.run_parsing import Parsing | 
					
						
						|  | from preprocess.openpose.run_openpose import OpenPose | 
					
						
						|  | from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation | 
					
						
						|  | from torchvision.transforms.functional import to_pil_image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pil_to_binary_mask(pil_image, threshold=0): | 
					
						
						|  | np_image = np.array(pil_image) | 
					
						
						|  | grayscale_image = Image.fromarray(np_image).convert("L") | 
					
						
						|  | binary_mask = np.array(grayscale_image) > threshold | 
					
						
						|  | mask = np.zeros(binary_mask.shape, dtype=np.uint8) | 
					
						
						|  | for i in range(binary_mask.shape[0]): | 
					
						
						|  | for j in range(binary_mask.shape[1]): | 
					
						
						|  | if binary_mask[i,j] == True : | 
					
						
						|  | mask[i,j] = 1 | 
					
						
						|  | mask = (mask*255).astype(np.uint8) | 
					
						
						|  | output_mask = Image.fromarray(mask) | 
					
						
						|  | return output_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | base_path = 'yisol/IDM-VTON' | 
					
						
						|  | example_path = os.path.join(os.path.dirname(__file__), 'example') | 
					
						
						|  |  | 
					
						
						|  | unet = UNet2DConditionModel.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="unet", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | unet.requires_grad_(False) | 
					
						
						|  | tokenizer_one = AutoTokenizer.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="tokenizer", | 
					
						
						|  | revision=None, | 
					
						
						|  | use_fast=False, | 
					
						
						|  | ) | 
					
						
						|  | tokenizer_two = AutoTokenizer.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="tokenizer_2", | 
					
						
						|  | revision=None, | 
					
						
						|  | use_fast=False, | 
					
						
						|  | ) | 
					
						
						|  | noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | 
					
						
						|  |  | 
					
						
						|  | text_encoder_one = CLIPTextModel.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="text_encoder", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | text_encoder_two = CLIPTextModelWithProjection.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="text_encoder_2", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | image_encoder = CLIPVisionModelWithProjection.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="image_encoder", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | vae = AutoencoderKL.from_pretrained(base_path, | 
					
						
						|  | subfolder="vae", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | subfolder="unet_encoder", | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parsing_model = Parsing(0) | 
					
						
						|  | openpose_model = OpenPose(0) | 
					
						
						|  |  | 
					
						
						|  | UNet_Encoder.requires_grad_(False) | 
					
						
						|  | image_encoder.requires_grad_(False) | 
					
						
						|  | vae.requires_grad_(False) | 
					
						
						|  | unet.requires_grad_(False) | 
					
						
						|  | text_encoder_one.requires_grad_(False) | 
					
						
						|  | text_encoder_two.requires_grad_(False) | 
					
						
						|  | tensor_transfrom = transforms.Compose( | 
					
						
						|  | [ | 
					
						
						|  | transforms.ToTensor(), | 
					
						
						|  | transforms.Normalize([0.5], [0.5]), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pipe = TryonPipeline.from_pretrained( | 
					
						
						|  | base_path, | 
					
						
						|  | unet=unet, | 
					
						
						|  | vae=vae, | 
					
						
						|  | feature_extractor= CLIPImageProcessor(), | 
					
						
						|  | text_encoder = text_encoder_one, | 
					
						
						|  | text_encoder_2 = text_encoder_two, | 
					
						
						|  | tokenizer = tokenizer_one, | 
					
						
						|  | tokenizer_2 = tokenizer_two, | 
					
						
						|  | scheduler = noise_scheduler, | 
					
						
						|  | image_encoder=image_encoder, | 
					
						
						|  | torch_dtype=torch.float16, | 
					
						
						|  | ) | 
					
						
						|  | pipe.unet_encoder = UNet_Encoder | 
					
						
						|  |  | 
					
						
						|  | @spaces.GPU | 
					
						
						|  | def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed): | 
					
						
						|  | device = "cuda" | 
					
						
						|  |  | 
					
						
						|  | openpose_model.preprocessor.body_estimation.model.to(device) | 
					
						
						|  | pipe.to(device) | 
					
						
						|  | pipe.unet_encoder.to(device) | 
					
						
						|  |  | 
					
						
						|  | garm_img= garm_img.convert("RGB").resize((768,1024)) | 
					
						
						|  | human_img_orig = dict["background"].convert("RGB") | 
					
						
						|  |  | 
					
						
						|  | if is_checked_crop: | 
					
						
						|  | width, height = human_img_orig.size | 
					
						
						|  | target_width = int(min(width, height * (3 / 4))) | 
					
						
						|  | target_height = int(min(height, width * (4 / 3))) | 
					
						
						|  | left = (width - target_width) / 2 | 
					
						
						|  | top = (height - target_height) / 2 | 
					
						
						|  | right = (width + target_width) / 2 | 
					
						
						|  | bottom = (height + target_height) / 2 | 
					
						
						|  | cropped_img = human_img_orig.crop((left, top, right, bottom)) | 
					
						
						|  | crop_size = cropped_img.size | 
					
						
						|  | human_img = cropped_img.resize((768,1024)) | 
					
						
						|  | else: | 
					
						
						|  | human_img = human_img_orig.resize((768,1024)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_checked: | 
					
						
						|  | keypoints = openpose_model(human_img.resize((384,512))) | 
					
						
						|  | model_parse, _ = parsing_model(human_img.resize((384,512))) | 
					
						
						|  | mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints) | 
					
						
						|  | mask = mask.resize((768,1024)) | 
					
						
						|  | else: | 
					
						
						|  | mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) | 
					
						
						|  | mask_gray = to_pil_image((mask_gray+1.0)/2.0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | human_img_arg = _apply_exif_orientation(human_img.resize((384,512))) | 
					
						
						|  | human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) | 
					
						
						|  |  | 
					
						
						|  | pose_img = args.func(args,human_img_arg) | 
					
						
						|  | pose_img = pose_img[:,:,::-1] | 
					
						
						|  | pose_img = Image.fromarray(pose_img).resize((768,1024)) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  |  | 
					
						
						|  | with torch.cuda.amp.autocast(): | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | prompt = "model is wearing " + garment_des | 
					
						
						|  | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | 
					
						
						|  | with torch.inference_mode(): | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | ) = pipe.encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | num_images_per_prompt=1, | 
					
						
						|  | do_classifier_free_guidance=True, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt = "a photo of " + garment_des | 
					
						
						|  | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | 
					
						
						|  | if not isinstance(prompt, List): | 
					
						
						|  | prompt = [prompt] * 1 | 
					
						
						|  | if not isinstance(negative_prompt, List): | 
					
						
						|  | negative_prompt = [negative_prompt] * 1 | 
					
						
						|  | with torch.inference_mode(): | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds_c, | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | _, | 
					
						
						|  | ) = pipe.encode_prompt( | 
					
						
						|  | prompt, | 
					
						
						|  | num_images_per_prompt=1, | 
					
						
						|  | do_classifier_free_guidance=False, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pose_img =  tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16) | 
					
						
						|  | garm_tensor =  tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16) | 
					
						
						|  | generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | 
					
						
						|  | images = pipe( | 
					
						
						|  | prompt_embeds=prompt_embeds.to(device,torch.float16), | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16), | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16), | 
					
						
						|  | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16), | 
					
						
						|  | num_inference_steps=denoise_steps, | 
					
						
						|  | generator=generator, | 
					
						
						|  | strength = 1.0, | 
					
						
						|  | pose_img = pose_img.to(device,torch.float16), | 
					
						
						|  | text_embeds_cloth=prompt_embeds_c.to(device,torch.float16), | 
					
						
						|  | cloth = garm_tensor.to(device,torch.float16), | 
					
						
						|  | mask_image=mask, | 
					
						
						|  | image=human_img, | 
					
						
						|  | height=1024, | 
					
						
						|  | width=768, | 
					
						
						|  | ip_adapter_image = garm_img.resize((768,1024)), | 
					
						
						|  | guidance_scale=2.0, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | if is_checked_crop: | 
					
						
						|  | out_img = images[0].resize(crop_size) | 
					
						
						|  | human_img_orig.paste(out_img, (int(left), int(top))) | 
					
						
						|  | return human_img_orig, mask_gray | 
					
						
						|  | else: | 
					
						
						|  | return images[0], mask_gray | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | garm_list = os.listdir(os.path.join(example_path,"cloth")) | 
					
						
						|  | garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] | 
					
						
						|  |  | 
					
						
						|  | human_list = os.listdir(os.path.join(example_path,"human")) | 
					
						
						|  | human_list_path = [os.path.join(example_path,"human",human) for human in human_list] | 
					
						
						|  |  | 
					
						
						|  | human_ex_list = [] | 
					
						
						|  | for ex_human in human_list_path: | 
					
						
						|  | ex_dict= {} | 
					
						
						|  | ex_dict['background'] = ex_human | 
					
						
						|  | ex_dict['layers'] = None | 
					
						
						|  | ex_dict['composite'] = None | 
					
						
						|  | human_ex_list.append(ex_dict) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_blocks = gr.Blocks().queue() | 
					
						
						|  | with image_blocks as demo: | 
					
						
						|  | gr.Markdown("## IDM-VTON πππ") | 
					
						
						|  | gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)") | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False) | 
					
						
						|  |  | 
					
						
						|  | example = gr.Examples( | 
					
						
						|  | inputs=imgs, | 
					
						
						|  | examples_per_page=10, | 
					
						
						|  | examples=human_ex_list | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | garm_img = gr.Image(label="Garment", sources='upload', type="pil") | 
					
						
						|  | with gr.Row(elem_id="prompt-container"): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt") | 
					
						
						|  | example = gr.Examples( | 
					
						
						|  | inputs=garm_img, | 
					
						
						|  | examples_per_page=8, | 
					
						
						|  | examples=garm_list_path) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  |  | 
					
						
						|  | masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  |  | 
					
						
						|  | image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | try_button = gr.Button(value="Try-on") | 
					
						
						|  | with gr.Accordion(label="Advanced Settings", open=False): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1) | 
					
						
						|  | seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_blocks.launch(show_api=True) | 
					
						
						|  |  | 
					
						
						|  |  |