|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from __future__ import absolute_import, division, print_function | 
					
						
						|  | import logging | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  |  | 
					
						
						|  | from detectron2.layers import ShapeSpec | 
					
						
						|  | from detectron2.modeling.backbone import BACKBONE_REGISTRY | 
					
						
						|  | from detectron2.modeling.backbone.backbone import Backbone | 
					
						
						|  |  | 
					
						
						|  | BN_MOMENTUM = 0.1 | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  | __all__ = ["build_pose_hrnet_backbone", "PoseHigherResolutionNet"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def conv3x3(in_planes, out_planes, stride=1): | 
					
						
						|  | """3x3 convolution with padding""" | 
					
						
						|  | return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class BasicBlock(nn.Module): | 
					
						
						|  | expansion = 1 | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, inplanes, planes, stride=1, downsample=None): | 
					
						
						|  | super(BasicBlock, self).__init__() | 
					
						
						|  | self.conv1 = conv3x3(inplanes, planes, stride) | 
					
						
						|  | self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | 
					
						
						|  | self.relu = nn.ReLU(inplace=True) | 
					
						
						|  | self.conv2 = conv3x3(planes, planes) | 
					
						
						|  | self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | 
					
						
						|  | self.downsample = downsample | 
					
						
						|  | self.stride = stride | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | residual = x | 
					
						
						|  |  | 
					
						
						|  | out = self.conv1(x) | 
					
						
						|  | out = self.bn1(out) | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | out = self.conv2(out) | 
					
						
						|  | out = self.bn2(out) | 
					
						
						|  |  | 
					
						
						|  | if self.downsample is not None: | 
					
						
						|  | residual = self.downsample(x) | 
					
						
						|  |  | 
					
						
						|  | out += residual | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Bottleneck(nn.Module): | 
					
						
						|  | expansion = 4 | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, inplanes, planes, stride=1, downsample=None): | 
					
						
						|  | super(Bottleneck, self).__init__() | 
					
						
						|  | self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | 
					
						
						|  | self.bn1 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | 
					
						
						|  | self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | 
					
						
						|  | self.bn2 = nn.BatchNorm2d(planes, momentum=BN_MOMENTUM) | 
					
						
						|  | self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | 
					
						
						|  | self.bn3 = nn.BatchNorm2d(planes * self.expansion, momentum=BN_MOMENTUM) | 
					
						
						|  | self.relu = nn.ReLU(inplace=True) | 
					
						
						|  | self.downsample = downsample | 
					
						
						|  | self.stride = stride | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | residual = x | 
					
						
						|  |  | 
					
						
						|  | out = self.conv1(x) | 
					
						
						|  | out = self.bn1(out) | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | out = self.conv2(out) | 
					
						
						|  | out = self.bn2(out) | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | out = self.conv3(out) | 
					
						
						|  | out = self.bn3(out) | 
					
						
						|  |  | 
					
						
						|  | if self.downsample is not None: | 
					
						
						|  | residual = self.downsample(x) | 
					
						
						|  |  | 
					
						
						|  | out += residual | 
					
						
						|  | out = self.relu(out) | 
					
						
						|  |  | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HighResolutionModule(nn.Module): | 
					
						
						|  | """HighResolutionModule | 
					
						
						|  | Building block of the PoseHigherResolutionNet (see lower) | 
					
						
						|  | arXiv: https://arxiv.org/abs/1908.10357 | 
					
						
						|  | Args: | 
					
						
						|  | num_branches (int): number of branches of the modyle | 
					
						
						|  | blocks (str): type of block of the module | 
					
						
						|  | num_blocks (int): number of blocks of the module | 
					
						
						|  | num_inchannels (int): number of input channels of the module | 
					
						
						|  | num_channels (list): number of channels of each branch | 
					
						
						|  | multi_scale_output (bool): only used by the last module of PoseHigherResolutionNet | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_branches, | 
					
						
						|  | blocks, | 
					
						
						|  | num_blocks, | 
					
						
						|  | num_inchannels, | 
					
						
						|  | num_channels, | 
					
						
						|  | multi_scale_output=True, | 
					
						
						|  | ): | 
					
						
						|  | super(HighResolutionModule, self).__init__() | 
					
						
						|  | self._check_branches(num_branches, blocks, num_blocks, num_inchannels, num_channels) | 
					
						
						|  |  | 
					
						
						|  | self.num_inchannels = num_inchannels | 
					
						
						|  | self.num_branches = num_branches | 
					
						
						|  |  | 
					
						
						|  | self.multi_scale_output = multi_scale_output | 
					
						
						|  |  | 
					
						
						|  | self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) | 
					
						
						|  | self.fuse_layers = self._make_fuse_layers() | 
					
						
						|  | self.relu = nn.ReLU(True) | 
					
						
						|  |  | 
					
						
						|  | def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels): | 
					
						
						|  | if num_branches != len(num_blocks): | 
					
						
						|  | error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format(num_branches, len(num_blocks)) | 
					
						
						|  | logger.error(error_msg) | 
					
						
						|  | raise ValueError(error_msg) | 
					
						
						|  |  | 
					
						
						|  | if num_branches != len(num_channels): | 
					
						
						|  | error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( | 
					
						
						|  | num_branches, len(num_channels) | 
					
						
						|  | ) | 
					
						
						|  | logger.error(error_msg) | 
					
						
						|  | raise ValueError(error_msg) | 
					
						
						|  |  | 
					
						
						|  | if num_branches != len(num_inchannels): | 
					
						
						|  | error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format( | 
					
						
						|  | num_branches, len(num_inchannels) | 
					
						
						|  | ) | 
					
						
						|  | logger.error(error_msg) | 
					
						
						|  | raise ValueError(error_msg) | 
					
						
						|  |  | 
					
						
						|  | def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): | 
					
						
						|  | downsample = None | 
					
						
						|  | if ( | 
					
						
						|  | stride != 1 | 
					
						
						|  | or self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion | 
					
						
						|  | ): | 
					
						
						|  | downsample = nn.Sequential( | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | self.num_inchannels[branch_index], | 
					
						
						|  | num_channels[branch_index] * block.expansion, | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | stride=stride, | 
					
						
						|  | bias=False, | 
					
						
						|  | ), | 
					
						
						|  | nn.BatchNorm2d(num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | layers = [] | 
					
						
						|  | layers.append( | 
					
						
						|  | block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample) | 
					
						
						|  | ) | 
					
						
						|  | self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion | 
					
						
						|  | for _ in range(1, num_blocks[branch_index]): | 
					
						
						|  | layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) | 
					
						
						|  |  | 
					
						
						|  | return nn.Sequential(*layers) | 
					
						
						|  |  | 
					
						
						|  | def _make_branches(self, num_branches, block, num_blocks, num_channels): | 
					
						
						|  | branches = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(num_branches): | 
					
						
						|  | branches.append(self._make_one_branch(i, block, num_blocks, num_channels)) | 
					
						
						|  |  | 
					
						
						|  | return nn.ModuleList(branches) | 
					
						
						|  |  | 
					
						
						|  | def _make_fuse_layers(self): | 
					
						
						|  | if self.num_branches == 1: | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | num_branches = self.num_branches | 
					
						
						|  | num_inchannels = self.num_inchannels | 
					
						
						|  | fuse_layers = [] | 
					
						
						|  | for i in range(num_branches if self.multi_scale_output else 1): | 
					
						
						|  | fuse_layer = [] | 
					
						
						|  | for j in range(num_branches): | 
					
						
						|  | if j > i: | 
					
						
						|  | fuse_layer.append( | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), | 
					
						
						|  | nn.BatchNorm2d(num_inchannels[i]), | 
					
						
						|  | nn.Upsample(scale_factor=2 ** (j - i), mode="nearest"), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | elif j == i: | 
					
						
						|  | fuse_layer.append(None) | 
					
						
						|  | else: | 
					
						
						|  | conv3x3s = [] | 
					
						
						|  | for k in range(i - j): | 
					
						
						|  | if k == i - j - 1: | 
					
						
						|  | num_outchannels_conv3x3 = num_inchannels[i] | 
					
						
						|  | conv3x3s.append( | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | num_inchannels[j], | 
					
						
						|  | num_outchannels_conv3x3, | 
					
						
						|  | 3, | 
					
						
						|  | 2, | 
					
						
						|  | 1, | 
					
						
						|  | bias=False, | 
					
						
						|  | ), | 
					
						
						|  | nn.BatchNorm2d(num_outchannels_conv3x3), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | num_outchannels_conv3x3 = num_inchannels[j] | 
					
						
						|  | conv3x3s.append( | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | num_inchannels[j], | 
					
						
						|  | num_outchannels_conv3x3, | 
					
						
						|  | 3, | 
					
						
						|  | 2, | 
					
						
						|  | 1, | 
					
						
						|  | bias=False, | 
					
						
						|  | ), | 
					
						
						|  | nn.BatchNorm2d(num_outchannels_conv3x3), | 
					
						
						|  | nn.ReLU(True), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | fuse_layer.append(nn.Sequential(*conv3x3s)) | 
					
						
						|  | fuse_layers.append(nn.ModuleList(fuse_layer)) | 
					
						
						|  |  | 
					
						
						|  | return nn.ModuleList(fuse_layers) | 
					
						
						|  |  | 
					
						
						|  | def get_num_inchannels(self): | 
					
						
						|  | return self.num_inchannels | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | if self.num_branches == 1: | 
					
						
						|  | return [self.branches[0](x[0])] | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.num_branches): | 
					
						
						|  | x[i] = self.branches[i](x[i]) | 
					
						
						|  |  | 
					
						
						|  | x_fuse = [] | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(self.fuse_layers)): | 
					
						
						|  | y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | 
					
						
						|  | for j in range(1, self.num_branches): | 
					
						
						|  | if i == j: | 
					
						
						|  | y = y + x[j] | 
					
						
						|  | else: | 
					
						
						|  | z = self.fuse_layers[i][j](x[j])[:, :, : y.shape[2], : y.shape[3]] | 
					
						
						|  | y = y + z | 
					
						
						|  | x_fuse.append(self.relu(y)) | 
					
						
						|  |  | 
					
						
						|  | return x_fuse | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | blocks_dict = {"BASIC": BasicBlock, "BOTTLENECK": Bottleneck} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PoseHigherResolutionNet(Backbone): | 
					
						
						|  | """PoseHigherResolutionNet | 
					
						
						|  | Composed of several HighResolutionModule tied together with ConvNets | 
					
						
						|  | Adapted from the GitHub version to fit with HRFPN and the Detectron2 infrastructure | 
					
						
						|  | arXiv: https://arxiv.org/abs/1908.10357 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, cfg, **kwargs): | 
					
						
						|  | self.inplanes = cfg.MODEL.HRNET.STEM_INPLANES | 
					
						
						|  | super(PoseHigherResolutionNet, self).__init__() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | 
					
						
						|  | self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | 
					
						
						|  | self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | 
					
						
						|  | self.bn2 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM) | 
					
						
						|  | self.relu = nn.ReLU(inplace=True) | 
					
						
						|  | self.layer1 = self._make_layer(Bottleneck, 64, 4) | 
					
						
						|  |  | 
					
						
						|  | self.stage2_cfg = cfg.MODEL.HRNET.STAGE2 | 
					
						
						|  | num_channels = self.stage2_cfg.NUM_CHANNELS | 
					
						
						|  | block = blocks_dict[self.stage2_cfg.BLOCK] | 
					
						
						|  | num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | 
					
						
						|  | self.transition1 = self._make_transition_layer([256], num_channels) | 
					
						
						|  | self.stage2, pre_stage_channels = self._make_stage(self.stage2_cfg, num_channels) | 
					
						
						|  |  | 
					
						
						|  | self.stage3_cfg = cfg.MODEL.HRNET.STAGE3 | 
					
						
						|  | num_channels = self.stage3_cfg.NUM_CHANNELS | 
					
						
						|  | block = blocks_dict[self.stage3_cfg.BLOCK] | 
					
						
						|  | num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | 
					
						
						|  | self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | 
					
						
						|  | self.stage3, pre_stage_channels = self._make_stage(self.stage3_cfg, num_channels) | 
					
						
						|  |  | 
					
						
						|  | self.stage4_cfg = cfg.MODEL.HRNET.STAGE4 | 
					
						
						|  | num_channels = self.stage4_cfg.NUM_CHANNELS | 
					
						
						|  | block = blocks_dict[self.stage4_cfg.BLOCK] | 
					
						
						|  | num_channels = [num_channels[i] * block.expansion for i in range(len(num_channels))] | 
					
						
						|  | self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | 
					
						
						|  | self.stage4, pre_stage_channels = self._make_stage( | 
					
						
						|  | self.stage4_cfg, num_channels, multi_scale_output=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self._out_features = [] | 
					
						
						|  | self._out_feature_channels = {} | 
					
						
						|  | self._out_feature_strides = {} | 
					
						
						|  |  | 
					
						
						|  | for i in range(cfg.MODEL.HRNET.STAGE4.NUM_BRANCHES): | 
					
						
						|  | self._out_features.append("p%d" % (i + 1)) | 
					
						
						|  | self._out_feature_channels.update( | 
					
						
						|  | {self._out_features[-1]: cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS[i]} | 
					
						
						|  | ) | 
					
						
						|  | self._out_feature_strides.update({self._out_features[-1]: 1}) | 
					
						
						|  |  | 
					
						
						|  | def _get_deconv_cfg(self, deconv_kernel): | 
					
						
						|  | if deconv_kernel == 4: | 
					
						
						|  | padding = 1 | 
					
						
						|  | output_padding = 0 | 
					
						
						|  | elif deconv_kernel == 3: | 
					
						
						|  | padding = 1 | 
					
						
						|  | output_padding = 1 | 
					
						
						|  | elif deconv_kernel == 2: | 
					
						
						|  | padding = 0 | 
					
						
						|  | output_padding = 0 | 
					
						
						|  |  | 
					
						
						|  | return deconv_kernel, padding, output_padding | 
					
						
						|  |  | 
					
						
						|  | def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | 
					
						
						|  | num_branches_cur = len(num_channels_cur_layer) | 
					
						
						|  | num_branches_pre = len(num_channels_pre_layer) | 
					
						
						|  |  | 
					
						
						|  | transition_layers = [] | 
					
						
						|  | for i in range(num_branches_cur): | 
					
						
						|  | if i < num_branches_pre: | 
					
						
						|  | if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | 
					
						
						|  | transition_layers.append( | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | num_channels_pre_layer[i], | 
					
						
						|  | num_channels_cur_layer[i], | 
					
						
						|  | 3, | 
					
						
						|  | 1, | 
					
						
						|  | 1, | 
					
						
						|  | bias=False, | 
					
						
						|  | ), | 
					
						
						|  | nn.BatchNorm2d(num_channels_cur_layer[i]), | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | transition_layers.append(None) | 
					
						
						|  | else: | 
					
						
						|  | conv3x3s = [] | 
					
						
						|  | for j in range(i + 1 - num_branches_pre): | 
					
						
						|  | inchannels = num_channels_pre_layer[-1] | 
					
						
						|  | outchannels = ( | 
					
						
						|  | num_channels_cur_layer[i] if j == i - num_branches_pre else inchannels | 
					
						
						|  | ) | 
					
						
						|  | conv3x3s.append( | 
					
						
						|  | nn.Sequential( | 
					
						
						|  | nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False), | 
					
						
						|  | nn.BatchNorm2d(outchannels), | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | transition_layers.append(nn.Sequential(*conv3x3s)) | 
					
						
						|  |  | 
					
						
						|  | return nn.ModuleList(transition_layers) | 
					
						
						|  |  | 
					
						
						|  | def _make_layer(self, block, planes, blocks, stride=1): | 
					
						
						|  | downsample = None | 
					
						
						|  | if stride != 1 or self.inplanes != planes * block.expansion: | 
					
						
						|  | downsample = nn.Sequential( | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | self.inplanes, | 
					
						
						|  | planes * block.expansion, | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | stride=stride, | 
					
						
						|  | bias=False, | 
					
						
						|  | ), | 
					
						
						|  | nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | layers = [] | 
					
						
						|  | layers.append(block(self.inplanes, planes, stride, downsample)) | 
					
						
						|  | self.inplanes = planes * block.expansion | 
					
						
						|  | for _ in range(1, blocks): | 
					
						
						|  | layers.append(block(self.inplanes, planes)) | 
					
						
						|  |  | 
					
						
						|  | return nn.Sequential(*layers) | 
					
						
						|  |  | 
					
						
						|  | def _make_stage(self, layer_config, num_inchannels, multi_scale_output=True): | 
					
						
						|  | num_modules = layer_config["NUM_MODULES"] | 
					
						
						|  | num_branches = layer_config["NUM_BRANCHES"] | 
					
						
						|  | num_blocks = layer_config["NUM_BLOCKS"] | 
					
						
						|  | num_channels = layer_config["NUM_CHANNELS"] | 
					
						
						|  | block = blocks_dict[layer_config["BLOCK"]] | 
					
						
						|  |  | 
					
						
						|  | modules = [] | 
					
						
						|  | for i in range(num_modules): | 
					
						
						|  |  | 
					
						
						|  | if not multi_scale_output and i == num_modules - 1: | 
					
						
						|  | reset_multi_scale_output = False | 
					
						
						|  | else: | 
					
						
						|  | reset_multi_scale_output = True | 
					
						
						|  |  | 
					
						
						|  | modules.append( | 
					
						
						|  | HighResolutionModule( | 
					
						
						|  | num_branches, | 
					
						
						|  | block, | 
					
						
						|  | num_blocks, | 
					
						
						|  | num_inchannels, | 
					
						
						|  | num_channels, | 
					
						
						|  | reset_multi_scale_output, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | num_inchannels = modules[-1].get_num_inchannels() | 
					
						
						|  |  | 
					
						
						|  | return nn.Sequential(*modules), num_inchannels | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.conv1(x) | 
					
						
						|  | x = self.bn1(x) | 
					
						
						|  | x = self.relu(x) | 
					
						
						|  | x = self.conv2(x) | 
					
						
						|  | x = self.bn2(x) | 
					
						
						|  | x = self.relu(x) | 
					
						
						|  | x = self.layer1(x) | 
					
						
						|  |  | 
					
						
						|  | x_list = [] | 
					
						
						|  | for i in range(self.stage2_cfg.NUM_BRANCHES): | 
					
						
						|  | if self.transition1[i] is not None: | 
					
						
						|  | x_list.append(self.transition1[i](x)) | 
					
						
						|  | else: | 
					
						
						|  | x_list.append(x) | 
					
						
						|  | y_list = self.stage2(x_list) | 
					
						
						|  |  | 
					
						
						|  | x_list = [] | 
					
						
						|  | for i in range(self.stage3_cfg.NUM_BRANCHES): | 
					
						
						|  | if self.transition2[i] is not None: | 
					
						
						|  | x_list.append(self.transition2[i](y_list[-1])) | 
					
						
						|  | else: | 
					
						
						|  | x_list.append(y_list[i]) | 
					
						
						|  | y_list = self.stage3(x_list) | 
					
						
						|  |  | 
					
						
						|  | x_list = [] | 
					
						
						|  | for i in range(self.stage4_cfg.NUM_BRANCHES): | 
					
						
						|  | if self.transition3[i] is not None: | 
					
						
						|  | x_list.append(self.transition3[i](y_list[-1])) | 
					
						
						|  | else: | 
					
						
						|  | x_list.append(y_list[i]) | 
					
						
						|  | y_list = self.stage4(x_list) | 
					
						
						|  |  | 
					
						
						|  | assert len(self._out_features) == len(y_list) | 
					
						
						|  | return dict(zip(self._out_features, y_list)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @BACKBONE_REGISTRY.register() | 
					
						
						|  | def build_pose_hrnet_backbone(cfg, input_shape: ShapeSpec): | 
					
						
						|  | model = PoseHigherResolutionNet(cfg) | 
					
						
						|  | return model | 
					
						
						|  |  |