Update app.py
Browse files
app.py
CHANGED
|
@@ -32,107 +32,70 @@ from torchvision.transforms.functional import to_pil_image
|
|
| 32 |
|
| 33 |
app = Flask(__name__)
|
| 34 |
|
|
|
|
| 35 |
base_path = 'yisol/IDM-VTON'
|
| 36 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
| 37 |
|
|
|
|
| 38 |
unet = UNet2DConditionModel.from_pretrained(
|
| 39 |
base_path,
|
| 40 |
subfolder="unet",
|
| 41 |
torch_dtype=torch.float16,
|
| 42 |
force_download=False
|
| 43 |
)
|
| 44 |
-
unet.requires_grad_(False)
|
| 45 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
| 46 |
base_path,
|
| 47 |
subfolder="tokenizer",
|
| 48 |
-
revision=None,
|
| 49 |
use_fast=False,
|
| 50 |
force_download=False
|
| 51 |
)
|
| 52 |
tokenizer_two = AutoTokenizer.from_pretrained(
|
| 53 |
base_path,
|
| 54 |
subfolder="tokenizer_2",
|
| 55 |
-
revision=None,
|
| 56 |
use_fast=False,
|
| 57 |
force_download=False
|
| 58 |
)
|
| 59 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
force_download=False
|
| 66 |
-
)
|
| 67 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
| 68 |
-
base_path,
|
| 69 |
-
subfolder="text_encoder_2",
|
| 70 |
-
torch_dtype=torch.float16,
|
| 71 |
-
force_download=False
|
| 72 |
-
)
|
| 73 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 74 |
-
base_path,
|
| 75 |
-
subfolder="image_encoder",
|
| 76 |
-
torch_dtype=torch.float16,
|
| 77 |
-
force_download=False
|
| 78 |
-
)
|
| 79 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
| 80 |
-
subfolder="vae",
|
| 81 |
-
torch_dtype=torch.float16,
|
| 82 |
-
force_download=False
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
| 86 |
-
base_path,
|
| 87 |
-
subfolder="unet_encoder",
|
| 88 |
-
torch_dtype=torch.float16,
|
| 89 |
-
force_download=False
|
| 90 |
-
)
|
| 91 |
|
| 92 |
parsing_model = Parsing(0)
|
| 93 |
openpose_model = OpenPose(0)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
image_encoder.requires_grad_(False)
|
| 97 |
-
vae.requires_grad_(False)
|
| 98 |
-
unet.requires_grad_(False)
|
| 99 |
-
text_encoder_one.requires_grad_(False)
|
| 100 |
-
text_encoder_two.requires_grad_(False)
|
| 101 |
-
tensor_transfrom = transforms.Compose(
|
| 102 |
-
[
|
| 103 |
-
transforms.ToTensor(),
|
| 104 |
-
transforms.Normalize([0.5], [0.5]),
|
| 105 |
-
]
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
pipe = TryonPipeline.from_pretrained(
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
)
|
| 122 |
pipe.unet_encoder = UNet_Encoder
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
def pil_to_binary_mask(pil_image, threshold=0):
|
| 125 |
np_image = np.array(pil_image)
|
| 126 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
| 127 |
binary_mask = np.array(grayscale_image) > threshold
|
| 128 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
mask = (mask * 255).astype(np.uint8)
|
| 134 |
-
output_mask = Image.fromarray(mask)
|
| 135 |
-
return output_mask
|
| 136 |
|
| 137 |
def get_image_from_url(url):
|
| 138 |
try:
|
|
@@ -157,8 +120,7 @@ def encode_image_to_base64(img):
|
|
| 157 |
try:
|
| 158 |
buffered = BytesIO()
|
| 159 |
img.save(buffered, format="PNG")
|
| 160 |
-
|
| 161 |
-
return img_str
|
| 162 |
except Exception as e:
|
| 163 |
logging.error(f"Error encoding image: {e}")
|
| 164 |
raise
|
|
@@ -283,7 +245,6 @@ def tryon_v2():
|
|
| 283 |
human_image_data = data['human_image']
|
| 284 |
garment_image_data = data['garment_image']
|
| 285 |
|
| 286 |
-
# Process images (base64 ou URL)
|
| 287 |
human_image = process_image(human_image_data)
|
| 288 |
garment_image = process_image(garment_image_data)
|
| 289 |
|
|
@@ -294,18 +255,18 @@ def tryon_v2():
|
|
| 294 |
seed = int(data.get('seed', random.randint(0, 9999999)))
|
| 295 |
categorie = data.get('categorie', 'upper_body')
|
| 296 |
|
| 297 |
-
# Vérifie si 'mask_image' est présent dans les données
|
| 298 |
mask_image = None
|
| 299 |
if 'mask_image' in data:
|
| 300 |
mask_image_data = data['mask_image']
|
| 301 |
mask_image = process_image(mask_image_data)
|
| 302 |
-
|
| 303 |
human_dict = {
|
| 304 |
'background': human_image,
|
| 305 |
'layers': [mask_image] if not use_auto_mask else None,
|
| 306 |
'composite': None
|
| 307 |
}
|
| 308 |
-
|
|
|
|
| 309 |
return jsonify({
|
| 310 |
'image_id': save_image(output_image)
|
| 311 |
})
|
|
|
|
| 32 |
|
| 33 |
app = Flask(__name__)
|
| 34 |
|
| 35 |
+
# Chemins de base pour les modèles
|
| 36 |
base_path = 'yisol/IDM-VTON'
|
|
|
|
| 37 |
|
| 38 |
+
# Chargement des modèles
|
| 39 |
unet = UNet2DConditionModel.from_pretrained(
|
| 40 |
base_path,
|
| 41 |
subfolder="unet",
|
| 42 |
torch_dtype=torch.float16,
|
| 43 |
force_download=False
|
| 44 |
)
|
|
|
|
| 45 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
| 46 |
base_path,
|
| 47 |
subfolder="tokenizer",
|
|
|
|
| 48 |
use_fast=False,
|
| 49 |
force_download=False
|
| 50 |
)
|
| 51 |
tokenizer_two = AutoTokenizer.from_pretrained(
|
| 52 |
base_path,
|
| 53 |
subfolder="tokenizer_2",
|
|
|
|
| 54 |
use_fast=False,
|
| 55 |
force_download=False
|
| 56 |
)
|
| 57 |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
| 58 |
+
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
|
| 59 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
|
| 60 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
|
| 61 |
+
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
|
| 62 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
parsing_model = Parsing(0)
|
| 65 |
openpose_model = OpenPose(0)
|
| 66 |
|
| 67 |
+
# Préparation du pipeline Tryon
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
pipe = TryonPipeline.from_pretrained(
|
| 69 |
+
base_path,
|
| 70 |
+
unet=unet,
|
| 71 |
+
vae=vae,
|
| 72 |
+
feature_extractor=CLIPImageProcessor(),
|
| 73 |
+
text_encoder=text_encoder_one,
|
| 74 |
+
text_encoder_2=text_encoder_two,
|
| 75 |
+
tokenizer=tokenizer_one,
|
| 76 |
+
tokenizer_2=tokenizer_two,
|
| 77 |
+
scheduler=noise_scheduler,
|
| 78 |
+
image_encoder=image_encoder,
|
| 79 |
+
torch_dtype=torch.float16,
|
| 80 |
+
force_download=False
|
| 81 |
)
|
| 82 |
pipe.unet_encoder = UNet_Encoder
|
| 83 |
|
| 84 |
+
# Utilisation des transformations d'images
|
| 85 |
+
tensor_transfrom = transforms.Compose([
|
| 86 |
+
transforms.ToTensor(),
|
| 87 |
+
transforms.Normalize([0.5], [0.5]),
|
| 88 |
+
])
|
| 89 |
+
|
| 90 |
def pil_to_binary_mask(pil_image, threshold=0):
|
| 91 |
np_image = np.array(pil_image)
|
| 92 |
grayscale_image = Image.fromarray(np_image).convert("L")
|
| 93 |
binary_mask = np.array(grayscale_image) > threshold
|
| 94 |
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
| 95 |
+
mask[binary_mask] = 1
|
| 96 |
+
return Image.fromarray((mask * 255).astype(np.uint8))
|
| 97 |
+
|
| 98 |
+
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
def get_image_from_url(url):
|
| 101 |
try:
|
|
|
|
| 120 |
try:
|
| 121 |
buffered = BytesIO()
|
| 122 |
img.save(buffered, format="PNG")
|
| 123 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
| 124 |
except Exception as e:
|
| 125 |
logging.error(f"Error encoding image: {e}")
|
| 126 |
raise
|
|
|
|
| 245 |
human_image_data = data['human_image']
|
| 246 |
garment_image_data = data['garment_image']
|
| 247 |
|
|
|
|
| 248 |
human_image = process_image(human_image_data)
|
| 249 |
garment_image = process_image(garment_image_data)
|
| 250 |
|
|
|
|
| 255 |
seed = int(data.get('seed', random.randint(0, 9999999)))
|
| 256 |
categorie = data.get('categorie', 'upper_body')
|
| 257 |
|
|
|
|
| 258 |
mask_image = None
|
| 259 |
if 'mask_image' in data:
|
| 260 |
mask_image_data = data['mask_image']
|
| 261 |
mask_image = process_image(mask_image_data)
|
| 262 |
+
|
| 263 |
human_dict = {
|
| 264 |
'background': human_image,
|
| 265 |
'layers': [mask_image] if not use_auto_mask else None,
|
| 266 |
'composite': None
|
| 267 |
}
|
| 268 |
+
|
| 269 |
+
output_image, mask_image = start_tryon(human_dict, garment_image, description, use_auto_mask, use_auto_crop, denoise_steps, seed, categorie)
|
| 270 |
return jsonify({
|
| 271 |
'image_id': save_image(output_image)
|
| 272 |
})
|