Spaces:
Runtime error
Runtime error
| from io import BytesIO | |
| from PIL import Image | |
| import gradio as gr | |
| import re | |
| import torch | |
| from transformers import DonutProcessor, VisionEncoderDecoderModel | |
| from transformers import AutoProcessor, PaliGemmaProcessor, PaliGemmaForConditionalGeneration | |
| from transformers import AutoModelForVision2Seq | |
| from huggingface_hub import InferenceClient | |
| import base64 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_choices = [ | |
| "idefics2", | |
| "paligemma", | |
| "donut" | |
| ] | |
| def load_donut_model(): | |
| processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") | |
| model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") | |
| model.to(device) | |
| return model, processor | |
| def load_paligemma_docvqa(): | |
| # model_id = "google/paligemma-3b-ft-docvqa-896" | |
| model_id = "google/paligemma-3b-mix-448" | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) | |
| model.to(device) | |
| return model, processor | |
| def load_idefics_docvqa(): | |
| model_id = "HuggingFaceM4/idefics2-8b" | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| model = AutoModelForVision2Seq.from_pretrained(model_id) | |
| model.to(device) | |
| return model, processor | |
| def load_models(): | |
| # load donut | |
| donut_model, donut_processor = load_donut_model() | |
| print("donut downloaded") | |
| # #load paligemma | |
| pg_model, pg_processor = load_paligemma_docvqa() | |
| print("paligemma downloaded") | |
| return {"donut":[donut_model, donut_processor], | |
| "paligemma": [pg_model, pg_processor] | |
| } | |
| loaded_models = load_models() | |
| print("models loaded") | |
| def base64_encoded_image(image_array): | |
| im = Image.fromarray(image_array) | |
| buffered = BytesIO() | |
| im.save(buffered, format="PNG") | |
| image_bytes = buffered.getvalue() | |
| image_base64 = base64.b64encode(image_bytes).decode('ascii') | |
| return image_base64 | |
| def inference_calling_idefics(image_array, question): | |
| model_id = "HuggingFaceM4/idefics2-8b" | |
| client = InferenceClient(model=model_id) | |
| image_base64 = base64_encoded_image(image_array) | |
| image_info = f"data:image/png;base64,{image_base64}" | |
| prompt = f"{question}\n\n" | |
| response = client.text_generation(prompt) | |
| return response | |
| def process_document_donut(image_array, question): | |
| model, processor = loaded_models.get("donut") | |
| # prepare encoder inputs | |
| pixel_values = processor(image_array, return_tensors="pt").pixel_values | |
| # prepare decoder inputs | |
| task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" | |
| prompt = task_prompt.replace("{user_input}", question) | |
| decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
| # generate answer | |
| outputs = model.generate( | |
| pixel_values.to(device), | |
| decoder_input_ids=decoder_input_ids.to(device), | |
| max_length=model.decoder.config.max_position_embeddings, | |
| early_stopping=True, | |
| pad_token_id=processor.tokenizer.pad_token_id, | |
| eos_token_id=processor.tokenizer.eos_token_id, | |
| use_cache=True, | |
| num_beams=1, | |
| bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
| return_dict_in_generate=True, | |
| ) | |
| # postprocess | |
| sequence = processor.batch_decode(outputs.sequences)[0] | |
| sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
| sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
| op = processor.token2json(sequence) | |
| op = op.get("answer", str(op)) | |
| return op | |
| def process_document_pg(image_array, question): | |
| print("qustion :", question) | |
| print("called loaded model") | |
| model, processor = loaded_models.get("paligemma") | |
| print("converting inputs") | |
| inputs = processor(images=image_array, text=question, return_tensors="pt").to(device) | |
| print("get predictions") | |
| predictions = model.generate(**inputs, max_new_tokens=100) | |
| print("returning decoding") | |
| return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
| def process_document_idf(image_array, question): | |
| model, processor = loaded_models.get("idefics") | |
| inputs = processor(images=image_array, text=question, return_tensors="pt") #.to(device) | |
| predictions = model.generate(**inputs, max_new_tokens=100) | |
| return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
| def generate_answer_donut(image_array, question): | |
| try: | |
| print("processing document - donut") | |
| answer = process_document_donut(image_array, question) | |
| print(answer) | |
| return answer | |
| except Exception as e: | |
| print(e) | |
| gr.Warning("There is some issue, please try again later.") | |
| return "sorry :(" | |
| def generate_answer_idefics(image_array, question): | |
| try: | |
| print("processing document - idf2") | |
| # answer = process_document_idf(image_array, question) | |
| answer = inference_calling_idefics(image_array, question) | |
| print(answer) | |
| return answer | |
| except Exception as e: | |
| print(e) | |
| gr.Warning("There is some issue, please try again later.") | |
| return "sorry :(" | |
| def generate_answer_paligemma(image_array, question): | |
| try: | |
| print("processing document - pg") | |
| answer = process_document_pg(image_array, question) | |
| print(answer) | |
| return answer | |
| except Exception as e: | |
| print(e) | |
| gr.Warning("There is some issue, please try again later.") | |
| return "sorry :(" | |
| def generate_answers(image_path, question, selected_model=model_choices[0]): | |
| print("selected model: ", selected_model) | |
| try: | |
| if selected_model == "donut": | |
| print("generate answers donut") | |
| answer = generate_answer_donut(image_path, question) | |
| elif selected_model == "paligemma": | |
| print("generate answers pg") | |
| answer = generate_answer_paligemma(image_path, question) | |
| else: | |
| print("generate answers idf2") | |
| answer = generate_answer_idefics(image_path, question) | |
| return [answer] #[donut_answer, pg_answer, idf_answer] | |
| except Exception as e: | |
| print(e) | |
| gr.Warning("There is some issue, please try again later.") | |
| return ["sorry :("] | |
| def greet(name, shame, game): | |
| return "Hello " + shame + "!!" | |
| INTRO_TEXT = """## VQA demo\n\n | |
| VQA task models comparison | |
| This space is to compare multiple models on visual document question answering. \n\n | |
| """ | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(INTRO_TEXT) | |
| # with gr.Tab("Text Generation"): | |
| with gr.Column(): | |
| image = gr.Image(label="Input Image") | |
| question = gr.Text(label="Question") | |
| selected_model = gr.Radio(model_choices, label="Model", info="Select the model you want to run") | |
| outputs_answer = gr.Text(label="Answer generated by the selected model") | |
| run_button = gr.Button() | |
| inputs = [ | |
| image, | |
| question, | |
| selected_model | |
| ] | |
| outputs = [ | |
| outputs_answer | |
| ] | |
| run_button.click( | |
| fn=generate_answers, | |
| inputs=inputs, | |
| outputs=outputs, | |
| ) | |
| examples = [["images/sample_vendor_contract.png", "Agreement is between whom?"], | |
| ["images/apple-10k-form.png", "What were the EMEA revenues in 2017?"], | |
| ["images/infographic.png", "What is workforce in UPS?"], | |
| ["images/omr1.png", "What was the food quality of hospitality tent?"], | |
| ["images/omr2.png", "What is efficiency rating?"], | |
| ["images/omr3.png", "What is the selected reason code?"], | |
| ["images/omr4.png", "What is the product classification?"], | |
| ["images/cupon code 2.png", "The coupon code is adressed to whom?"], | |
| ["images/cupon code 2.png", "What is coupon expiration date?"], | |
| ["images/cupon code 2.png", "What is assigned code?"], | |
| ["images/completion form.png", "What is date posting completed?"], | |
| ["images/sender_receiver.png", "What is the fax phone number of the sender?"], | |
| ["images/marketing research.png", "What is the current available balance?"], | |
| ["images/toxicity.png", "What is the reported date?"], | |
| ["images/handwriting.png", "What is the contribution amount per pay period?"], | |
| ] | |
| gr.Examples( | |
| examples=examples, | |
| inputs=inputs, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch(debug=True) |