Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from distutils.util import strtobool
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import os
|
| 4 |
+
import argparse
|
| 5 |
+
import gc
|
| 6 |
+
import os
|
| 7 |
+
import random
|
| 8 |
+
import re
|
| 9 |
+
import time
|
| 10 |
+
from distutils.util import strtobool
|
| 11 |
+
import spaces
|
| 12 |
+
|
| 13 |
+
import pandas as pd
|
| 14 |
+
|
| 15 |
+
import gc
|
| 16 |
+
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import yaml
|
| 21 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 23 |
+
from PIL import Image
|
| 24 |
+
|
| 25 |
+
from src.attn_utils.attn_utils import AttentionAdapter, AttnCollector
|
| 26 |
+
from src.attn_utils.flux_attn_processor import NewFluxAttnProcessor2_0
|
| 27 |
+
from src.attn_utils.seq_aligner import get_refinement_mapper
|
| 28 |
+
from src.callback.callback_fn import CallbackAll
|
| 29 |
+
from src.inversion.inverse import get_inversed_latent_list
|
| 30 |
+
from src.inversion.scheduling_flow_inverse import \
|
| 31 |
+
FlowMatchEulerDiscreteForwardScheduler
|
| 32 |
+
from src.pipeline.flux_pipeline import NewFluxPipeline
|
| 33 |
+
from src.transformer_utils.transformer_utils import (FeatureCollector,
|
| 34 |
+
FeatureReplace)
|
| 35 |
+
from src.utils import (find_token_id_differences, find_word_token_indices,
|
| 36 |
+
get_flux_pipeline, mask_decode, mask_interpolate)
|
| 37 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 38 |
+
|
| 39 |
+
pipe = get_flux_pipeline(pipeline_class=NewFluxPipeline)
|
| 40 |
+
pipe = pipe.to("cuda")
|
| 41 |
+
|
| 42 |
+
def fix_seed(random_seed):
|
| 43 |
+
"""
|
| 44 |
+
fix seed to control any randomness from a code
|
| 45 |
+
(enable stability of the experiments' results.)
|
| 46 |
+
"""
|
| 47 |
+
torch.manual_seed(random_seed)
|
| 48 |
+
torch.cuda.manual_seed(random_seed)
|
| 49 |
+
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
|
| 50 |
+
torch.backends.cudnn.deterministic = True
|
| 51 |
+
torch.backends.cudnn.benchmark = False
|
| 52 |
+
np.random.seed(random_seed)
|
| 53 |
+
random.seed(random_seed)
|
| 54 |
+
|
| 55 |
+
@spaces.GPU
|
| 56 |
+
def infer(
|
| 57 |
+
input_image: Union[str, Image.Image], # ⬅️ Main UI (uploaded image)
|
| 58 |
+
target_prompt: Union[str, List[str]] = '', # ⬅️ Main UI (text prompt)
|
| 59 |
+
source_prompt: Union[str, List[str]] = '', # ⬅️ Advanced accordion
|
| 60 |
+
seed: int = 0, # ⬅️ Advanced accordion
|
| 61 |
+
ca_steps: int = 10, # ⬅️ Advanced accordion
|
| 62 |
+
sa_steps: int = 7, # ⬅️ Advanced accordion
|
| 63 |
+
feature_steps: int = 5, # ⬅️ Advanced accordion
|
| 64 |
+
attn_topk: int = 20, # ⬅️ Advanced accordion
|
| 65 |
+
mask_image: Optional[Image.Image] = None, # ⬅️ Advanced (optional upload)
|
| 66 |
+
|
| 67 |
+
# Everything below is backend-related or defaults, not exposed in UI
|
| 68 |
+
blend_word: str = '',
|
| 69 |
+
results_dir: str = 'results',
|
| 70 |
+
model: str = 'flux',
|
| 71 |
+
|
| 72 |
+
ca_attn_layer_from: int = 13,
|
| 73 |
+
ca_attn_layer_to: int = 45,
|
| 74 |
+
sa_attn_layer_from: int = 20,
|
| 75 |
+
sa_attn_layer_to: int = 45,
|
| 76 |
+
feature_layer_from: int = 13,
|
| 77 |
+
feature_layer_to: int = 20,
|
| 78 |
+
flow_steps: int = 7,
|
| 79 |
+
step_start: int = 0,
|
| 80 |
+
num_inference_steps: int = 28,
|
| 81 |
+
guidance_scale: float = 3.5,
|
| 82 |
+
text_scale: float = 4.0,
|
| 83 |
+
mid_step_index: int = 14,
|
| 84 |
+
use_mask: bool = True,
|
| 85 |
+
use_ca_mask: bool = True,
|
| 86 |
+
mask_steps: int = 18,
|
| 87 |
+
mask_dilation: int = 3,
|
| 88 |
+
mask_nbins: int = 128
|
| 89 |
+
):
|
| 90 |
+
if isinstance(mask_image, Image.Image):
|
| 91 |
+
# Ensure mask is single channel
|
| 92 |
+
if mask_image.mode != "L":
|
| 93 |
+
mask_image = mask_image.convert("L")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
fix_seed(seed)
|
| 97 |
+
device = torch.device('cuda')
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
attn_proc = NewFluxAttnProcessor2_0
|
| 101 |
+
|
| 102 |
+
layer_order = range(57)
|
| 103 |
+
|
| 104 |
+
ca_layer_list = layer_order[ca_attn_layer_from:ca_attn_layer_to]
|
| 105 |
+
sa_layer_list = layer_order[feature_layer_to:sa_attn_layer_to]
|
| 106 |
+
feature_layer_list = layer_order[feature_layer_from:feature_layer_to]
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
source_img = input_image.resize((1024, 1024)).convert("RGB")
|
| 111 |
+
#img_base_name = os.path.splitext(img_path)[0].split('/')[-1]
|
| 112 |
+
result_img_dir = f"{results_dir}/seed_{seed}/{target_prompt}"
|
| 113 |
+
|
| 114 |
+
source_prompt = source_prompt
|
| 115 |
+
target_prompt = target_prompt
|
| 116 |
+
prompts = [source_prompt, target_prompt]
|
| 117 |
+
mask_path=mask_image
|
| 118 |
+
print(prompts)
|
| 119 |
+
mask = None
|
| 120 |
+
|
| 121 |
+
if use_mask:
|
| 122 |
+
use_mask = True
|
| 123 |
+
|
| 124 |
+
if mask_path is not None:
|
| 125 |
+
mask = mask_path
|
| 126 |
+
mask = torch.tensor(np.array(mask)).bool()
|
| 127 |
+
mask = mask.to(device)
|
| 128 |
+
|
| 129 |
+
# Increase the latent blending steps if the ground truth mask is used.
|
| 130 |
+
mask_steps = int(num_inference_steps * 0.9)
|
| 131 |
+
|
| 132 |
+
source_ca_index = None
|
| 133 |
+
target_ca_index = None
|
| 134 |
+
use_ca_mask = False
|
| 135 |
+
|
| 136 |
+
elif use_ca_mask and source_prompt:
|
| 137 |
+
mask = None
|
| 138 |
+
if blend_word and blend_word in source_prompt:
|
| 139 |
+
editing_source_token_index = find_word_token_indices(source_prompt, blend_word, pipe.tokenizer_2)
|
| 140 |
+
editing_target_token_index = None
|
| 141 |
+
else:
|
| 142 |
+
editing_tokens_info = find_token_id_differences(*prompts, pipe.tokenizer_2)
|
| 143 |
+
editing_source_token_index = editing_tokens_info['prompt_1']['index']
|
| 144 |
+
editing_target_token_index = editing_tokens_info['prompt_2']['index']
|
| 145 |
+
|
| 146 |
+
use_ca_mask = True
|
| 147 |
+
if editing_source_token_index:
|
| 148 |
+
source_ca_index = editing_source_token_index
|
| 149 |
+
target_ca_index = None
|
| 150 |
+
elif editing_target_token_index:
|
| 151 |
+
source_ca_index = None
|
| 152 |
+
target_ca_index = editing_target_token_index
|
| 153 |
+
else:
|
| 154 |
+
source_ca_index = None
|
| 155 |
+
target_ca_index = None
|
| 156 |
+
use_ca_mask = False
|
| 157 |
+
|
| 158 |
+
else:
|
| 159 |
+
source_ca_index = None
|
| 160 |
+
target_ca_index = None
|
| 161 |
+
use_ca_mask = False
|
| 162 |
+
|
| 163 |
+
else:
|
| 164 |
+
use_mask = False
|
| 165 |
+
use_ca_mask = False
|
| 166 |
+
source_ca_index = None
|
| 167 |
+
target_ca_index = None
|
| 168 |
+
|
| 169 |
+
if source_prompt:
|
| 170 |
+
# Use I2T-CA injection
|
| 171 |
+
mappers, alphas = get_refinement_mapper(prompts, pipe.tokenizer_2, max_len=512)
|
| 172 |
+
mappers = mappers.to(device=device)
|
| 173 |
+
alphas = alphas.to(device=device, dtype=pipe.dtype)
|
| 174 |
+
alphas = alphas[:, None, None, :]
|
| 175 |
+
|
| 176 |
+
attn_adj_from = 1
|
| 177 |
+
|
| 178 |
+
else:
|
| 179 |
+
# Not use I2T-CA injection
|
| 180 |
+
mappers = None
|
| 181 |
+
alphas = None
|
| 182 |
+
|
| 183 |
+
ca_steps = 0
|
| 184 |
+
attn_adj_from=3
|
| 185 |
+
|
| 186 |
+
feature_steps = feature_steps
|
| 187 |
+
|
| 188 |
+
attn_controller = AttentionAdapter(
|
| 189 |
+
ca_layer_list=ca_layer_list,
|
| 190 |
+
sa_layer_list=sa_layer_list,
|
| 191 |
+
ca_steps=ca_steps,
|
| 192 |
+
sa_steps=sa_steps,
|
| 193 |
+
method='replace_topk',
|
| 194 |
+
topk=attn_topk,
|
| 195 |
+
text_scale=text_scale,
|
| 196 |
+
mappers=mappers,
|
| 197 |
+
alphas=alphas,
|
| 198 |
+
attn_adj_from=attn_adj_from,
|
| 199 |
+
save_source_ca=source_ca_index is not None,
|
| 200 |
+
save_target_ca=target_ca_index is not None,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
attn_collector = AttnCollector(
|
| 204 |
+
transformer=pipe.transformer,
|
| 205 |
+
controller=attn_controller,
|
| 206 |
+
attn_processor_class=NewFluxAttnProcessor2_0,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
feature_controller = FeatureReplace(
|
| 210 |
+
layer_list=feature_layer_list,
|
| 211 |
+
feature_steps=feature_steps,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
feature_collector = FeatureCollector(
|
| 215 |
+
transformer=pipe.transformer,
|
| 216 |
+
controller=feature_controller,
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
num_prompts=len(prompts)
|
| 220 |
+
|
| 221 |
+
shape = (1, 16, 128, 128)
|
| 222 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 223 |
+
latents = randn_tensor(shape, device=device, generator=generator)
|
| 224 |
+
latents = pipe._pack_latents(latents, *latents.shape)
|
| 225 |
+
|
| 226 |
+
attn_collector.restore_orig_attention()
|
| 227 |
+
feature_collector.restore_orig_transformer()
|
| 228 |
+
|
| 229 |
+
t0 = time.perf_counter()
|
| 230 |
+
|
| 231 |
+
inv_latents = get_inversed_latent_list(
|
| 232 |
+
pipe,
|
| 233 |
+
source_img,
|
| 234 |
+
random_noise=latents,
|
| 235 |
+
num_inference_steps=num_inference_steps,
|
| 236 |
+
backward_method="ode",
|
| 237 |
+
use_prompt_for_inversion=False,
|
| 238 |
+
guidance_scale_for_inversion=0,
|
| 239 |
+
prompt_for_inversion='',
|
| 240 |
+
flow_steps=flow_steps,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
source_latents = inv_latents[::-1]
|
| 244 |
+
target_latents = inv_latents[::-1]
|
| 245 |
+
|
| 246 |
+
attn_collector.register_attention_control()
|
| 247 |
+
feature_collector.register_transformer_control()
|
| 248 |
+
|
| 249 |
+
callback_fn = CallbackAll(
|
| 250 |
+
latents=source_latents,
|
| 251 |
+
attn_collector=attn_collector,
|
| 252 |
+
feature_collector=feature_collector,
|
| 253 |
+
feature_inject_steps=feature_steps,
|
| 254 |
+
mid_step_index=mid_step_index,
|
| 255 |
+
step_start=step_start,
|
| 256 |
+
use_mask=use_mask,
|
| 257 |
+
use_ca_mask=use_ca_mask,
|
| 258 |
+
source_ca_index=source_ca_index,
|
| 259 |
+
target_ca_index=target_ca_index,
|
| 260 |
+
mask_kwargs={'dilation': mask_dilation},
|
| 261 |
+
mask_steps=mask_steps,
|
| 262 |
+
mask=mask,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
init_latent = target_latents[step_start]
|
| 266 |
+
init_latent = init_latent.repeat(num_prompts, 1, 1)
|
| 267 |
+
init_latent[0] = source_latents[mid_step_index]
|
| 268 |
+
|
| 269 |
+
os.makedirs(result_img_dir, exist_ok=True)
|
| 270 |
+
pipe.scheduler = FlowMatchEulerDiscreteForwardScheduler.from_config(
|
| 271 |
+
pipe.scheduler.config,
|
| 272 |
+
step_start=step_start,
|
| 273 |
+
margin_index_from_image=0
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
attn_controller.reset()
|
| 277 |
+
feature_controller.reset()
|
| 278 |
+
attn_controller.text_scale = text_scale
|
| 279 |
+
attn_controller.cur_step = step_start
|
| 280 |
+
feature_controller.cur_step = step_start
|
| 281 |
+
|
| 282 |
+
with torch.no_grad():
|
| 283 |
+
images = pipe(
|
| 284 |
+
prompts,
|
| 285 |
+
latents=init_latent,
|
| 286 |
+
num_images_per_prompt=1,
|
| 287 |
+
guidance_scale=guidance_scale,
|
| 288 |
+
num_inference_steps=num_inference_steps,
|
| 289 |
+
generator=generator,
|
| 290 |
+
callback_on_step_end=callback_fn,
|
| 291 |
+
mid_step_index=mid_step_index,
|
| 292 |
+
step_start=step_start,
|
| 293 |
+
callback_on_step_end_tensor_inputs=['latents'],
|
| 294 |
+
).images
|
| 295 |
+
|
| 296 |
+
t1 = time.perf_counter()
|
| 297 |
+
print(f"Done in {t1 - t0:.1f}s.")
|
| 298 |
+
|
| 299 |
+
source_img_path = os.path.join(result_img_dir, f"source.png")
|
| 300 |
+
source_img.save(source_img_path)
|
| 301 |
+
final_image=input_image
|
| 302 |
+
for i, img in enumerate(images[1:]):
|
| 303 |
+
target_img_path = os.path.join(result_img_dir, f"target_{i}.png")
|
| 304 |
+
img.save(target_img_path)
|
| 305 |
+
final_image=img
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
target_text_path = os.path.join(result_img_dir, f"target_prompts.txt")
|
| 309 |
+
with open(target_text_path, 'w') as file:
|
| 310 |
+
file.write(target_prompt + '\n')
|
| 311 |
+
|
| 312 |
+
source_text_path = os.path.join(result_img_dir, f"source_prompt.txt")
|
| 313 |
+
with open(source_text_path, 'w') as file:
|
| 314 |
+
file.write(source_prompt + '\n')
|
| 315 |
+
|
| 316 |
+
images = [source_img] + images
|
| 317 |
+
|
| 318 |
+
fs=3
|
| 319 |
+
n = len(images)
|
| 320 |
+
fig, ax = plt.subplots(1, n, figsize=(n*fs, 1*fs))
|
| 321 |
+
|
| 322 |
+
for i, img in enumerate(images):
|
| 323 |
+
ax[i].imshow(img)
|
| 324 |
+
|
| 325 |
+
ax[0].set_title('source')
|
| 326 |
+
ax[1].set_title(source_prompt, fontsize=7)
|
| 327 |
+
ax[2].set_title(target_prompt, fontsize=7)
|
| 328 |
+
|
| 329 |
+
overall_img_path = os.path.join(result_img_dir, f"overall.png")
|
| 330 |
+
plt.savefig(overall_img_path, bbox_inches='tight')
|
| 331 |
+
plt.close()
|
| 332 |
+
|
| 333 |
+
mask_save_dir = os.path.join(result_img_dir, f"mask")
|
| 334 |
+
os.makedirs(mask_save_dir, exist_ok=True)
|
| 335 |
+
|
| 336 |
+
if use_ca_mask:
|
| 337 |
+
ca_mask_path = os.path.join(mask_save_dir, f"mask_ca.png")
|
| 338 |
+
mask_img = Image.fromarray((callback_fn.mask.cpu().float().numpy() * 255).astype(np.uint8)).convert('L')
|
| 339 |
+
mask_img.save(ca_mask_path)
|
| 340 |
+
|
| 341 |
+
del inv_latents
|
| 342 |
+
del init_latent
|
| 343 |
+
gc.collect()
|
| 344 |
+
torch.cuda.empty_cache()
|
| 345 |
+
import shutil
|
| 346 |
+
shutil.rmtree(result_img_dir)
|
| 347 |
+
shutil.rmtree(results_dir)
|
| 348 |
+
|
| 349 |
+
return final_image, seed, gr.Button(visible=True)
|
| 350 |
+
|
| 351 |
+
import gradio as gr
|
| 352 |
+
from PIL import Image
|
| 353 |
+
import numpy as np
|
| 354 |
+
|
| 355 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 356 |
+
|
| 357 |
+
@spaces.GPU
|
| 358 |
+
def infer_example(input_image, target_prompt, source_prompt, seed, ca_steps, sa_steps, feature_steps, attn_topk, mask_image=None):
|
| 359 |
+
img, seed, _ = infer(
|
| 360 |
+
input_image=input_image,
|
| 361 |
+
target_prompt=target_prompt,
|
| 362 |
+
source_prompt=source_prompt,
|
| 363 |
+
seed=seed,
|
| 364 |
+
ca_steps=ca_steps,
|
| 365 |
+
sa_steps=sa_steps,
|
| 366 |
+
feature_steps=feature_steps,
|
| 367 |
+
attn_topk=attn_topk,
|
| 368 |
+
mask_image=mask_image
|
| 369 |
+
)
|
| 370 |
+
return img, seed
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
with gr.Blocks() as demo:
|
| 374 |
+
with gr.Column(elem_id="col-container"):
|
| 375 |
+
gr.Markdown("""# ReFlex
|
| 376 |
+
Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
|
| 377 |
+
[[blog]](https://wlaud1001.github.io/ReFlex/) | [[Github]](https://github.com/wlaud1001/ReFlex)
|
| 378 |
+
""")
|
| 379 |
+
with gr.Row():
|
| 380 |
+
with gr.Column():
|
| 381 |
+
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
| 382 |
+
mask_image = gr.Image(label="Upload optional mask", type="pil")
|
| 383 |
+
|
| 384 |
+
with gr.Row():
|
| 385 |
+
target_prompt = gr.Text(
|
| 386 |
+
label="Target Prompt",
|
| 387 |
+
show_label=False,
|
| 388 |
+
max_lines=1,
|
| 389 |
+
placeholder="Describe the Edited Image",
|
| 390 |
+
container=False,
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
with gr.Column():
|
| 394 |
+
source_prompt = gr.Text(
|
| 395 |
+
label="Source Prompt",
|
| 396 |
+
show_label=False,
|
| 397 |
+
max_lines=1,
|
| 398 |
+
placeholder="Enter source prompt (optional) : Describe the Input Image",
|
| 399 |
+
container=False,
|
| 400 |
+
)
|
| 401 |
+
run_button = gr.Button("Run", scale=10)
|
| 402 |
+
|
| 403 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 404 |
+
|
| 405 |
+
seed = gr.Slider(
|
| 406 |
+
label="Seed",
|
| 407 |
+
minimum=0,
|
| 408 |
+
maximum=MAX_SEED,
|
| 409 |
+
step=1,
|
| 410 |
+
value=0,
|
| 411 |
+
)
|
| 412 |
+
ca_steps = gr.Slider(
|
| 413 |
+
label="Cross-Attn (CA) Steps",
|
| 414 |
+
minimum=0,
|
| 415 |
+
maximum=20,
|
| 416 |
+
step=1,
|
| 417 |
+
value=10
|
| 418 |
+
)
|
| 419 |
+
sa_steps = gr.Slider(
|
| 420 |
+
label="Self-Attn (SA) Steps",
|
| 421 |
+
minimum=0,
|
| 422 |
+
maximum=20,
|
| 423 |
+
step=1,
|
| 424 |
+
value=7
|
| 425 |
+
)
|
| 426 |
+
feature_steps = gr.Slider(
|
| 427 |
+
label="Feature Injection Steps",
|
| 428 |
+
minimum=0,
|
| 429 |
+
maximum=20,
|
| 430 |
+
step=1,
|
| 431 |
+
value=5
|
| 432 |
+
)
|
| 433 |
+
attn_topk = gr.Slider(
|
| 434 |
+
label="Attention Top-K",
|
| 435 |
+
minimum=1,
|
| 436 |
+
maximum=64,
|
| 437 |
+
step=1,
|
| 438 |
+
value=20
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
with gr.Column():
|
| 442 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 443 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 444 |
+
|
| 445 |
+
examples = gr.Examples(
|
| 446 |
+
examples=[
|
| 447 |
+
|
| 448 |
+
# 2. Without mask
|
| 449 |
+
[
|
| 450 |
+
"data/images/bear.jpeg",
|
| 451 |
+
"an image of Paddington the bear",
|
| 452 |
+
"",
|
| 453 |
+
0, 0, 12, 7, 20,
|
| 454 |
+
None
|
| 455 |
+
],
|
| 456 |
+
# 3. Without mask
|
| 457 |
+
[
|
| 458 |
+
"data/images/bird_painting.jpg",
|
| 459 |
+
"a photo of an eagle in the sky",
|
| 460 |
+
"",
|
| 461 |
+
0, 0, 12, 7, 20,
|
| 462 |
+
None
|
| 463 |
+
],
|
| 464 |
+
[
|
| 465 |
+
"data/images/dancing.jpeg",
|
| 466 |
+
"a couple of silver robots dancing in the garden",
|
| 467 |
+
"",
|
| 468 |
+
0, 0, 12, 7, 20,
|
| 469 |
+
None
|
| 470 |
+
],
|
| 471 |
+
|
| 472 |
+
[
|
| 473 |
+
"data/images/real_karate.jpeg",
|
| 474 |
+
"a silver robot in the snow",
|
| 475 |
+
"",
|
| 476 |
+
0, 0, 12, 7, 20,
|
| 477 |
+
None
|
| 478 |
+
],
|
| 479 |
+
[
|
| 480 |
+
"data/images/woman_book.jpg",
|
| 481 |
+
"a woman sitting in the grass with a laptop",
|
| 482 |
+
"a woman sitting in the grass with a book",
|
| 483 |
+
0, 10, 7, 5, 20,
|
| 484 |
+
None
|
| 485 |
+
],
|
| 486 |
+
[
|
| 487 |
+
"data/images/statue.jpg",
|
| 488 |
+
"photo of a statue in side view",
|
| 489 |
+
"photo of a statue in front view",
|
| 490 |
+
0, 10, 7, 5, 60,
|
| 491 |
+
None
|
| 492 |
+
],
|
| 493 |
+
[
|
| 494 |
+
"data/images/tennis.jpg",
|
| 495 |
+
"a iron woman robot in a black tank top and pink shorts is about to hit a tennis ball",
|
| 496 |
+
"a woman in a black tank top and pink shorts is about to hit a tennis ball",
|
| 497 |
+
0, 10, 7, 5, 20,
|
| 498 |
+
None
|
| 499 |
+
],
|
| 500 |
+
[
|
| 501 |
+
"data/images/owl_heart.jpg",
|
| 502 |
+
"a cartoon painting of a cute owl with a circle on its body",
|
| 503 |
+
"a cartoon painting of a cute owl with a heart on its body",
|
| 504 |
+
0, 10, 7, 5, 20,
|
| 505 |
+
None
|
| 506 |
+
],
|
| 507 |
+
|
| 508 |
+
[
|
| 509 |
+
"data/images/girl_mountain.jpg",
|
| 510 |
+
"a woman with her arms outstretched in front of the NewYork",
|
| 511 |
+
"a woman with her arms outstretched on top of a mountain",
|
| 512 |
+
0, 10, 7, 5, 20,
|
| 513 |
+
"data/masks/girl_mountain.jpg"
|
| 514 |
+
],
|
| 515 |
+
[
|
| 516 |
+
"data/images/santa.jpg",
|
| 517 |
+
"the christmas illustration of a santa's angry face",
|
| 518 |
+
"the christmas illustration of a santa's laughing face",
|
| 519 |
+
0, 10, 7, 5, 20,
|
| 520 |
+
"data/masks/santa.jpg"
|
| 521 |
+
],
|
| 522 |
+
[
|
| 523 |
+
"data/images/cat_mirror.jpg",
|
| 524 |
+
"a tiger sitting next to a mirror",
|
| 525 |
+
"a cat sitting next to a mirror",
|
| 526 |
+
0, 10, 7, 5, 20,
|
| 527 |
+
"data/masks/cat_mirror.jpg"
|
| 528 |
+
],
|
| 529 |
+
],
|
| 530 |
+
inputs=[
|
| 531 |
+
input_image,
|
| 532 |
+
target_prompt,
|
| 533 |
+
source_prompt,
|
| 534 |
+
seed,
|
| 535 |
+
ca_steps,
|
| 536 |
+
sa_steps,
|
| 537 |
+
feature_steps,
|
| 538 |
+
attn_topk,
|
| 539 |
+
mask_image
|
| 540 |
+
],
|
| 541 |
+
outputs=[result, seed],
|
| 542 |
+
fn=infer_example,
|
| 543 |
+
cache_examples="lazy"
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
gr.on(
|
| 547 |
+
triggers=[run_button.click, target_prompt.submit],
|
| 548 |
+
fn=infer,
|
| 549 |
+
inputs=[
|
| 550 |
+
input_image,
|
| 551 |
+
target_prompt,
|
| 552 |
+
source_prompt,
|
| 553 |
+
seed,
|
| 554 |
+
ca_steps,
|
| 555 |
+
sa_steps,
|
| 556 |
+
feature_steps,
|
| 557 |
+
attn_topk,
|
| 558 |
+
mask_image
|
| 559 |
+
],
|
| 560 |
+
outputs=[result, seed, reuse_button]
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
reuse_button.click(
|
| 564 |
+
fn=lambda image: image,
|
| 565 |
+
inputs=[result],
|
| 566 |
+
outputs=[input_image]
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
demo.launch(share=True, debug=True)
|