Spaces:
Running
on
Zero
Running
on
Zero
Upload 77 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +10 -0
- README.md +68 -14
- data/images/bear.jpeg +0 -0
- data/images/bird.jpg +0 -0
- data/images/bird_painting.jpg +0 -0
- data/images/cabin.jpg +3 -0
- data/images/car.jpg +0 -0
- data/images/cat_hat.jpg +0 -0
- data/images/cat_mirror.jpg +0 -0
- data/images/cat_poly.jpg +0 -0
- data/images/dancing.jpeg +0 -0
- data/images/flower.jpg +0 -0
- data/images/fruit.jpg +3 -0
- data/images/girl_mountain.jpg +0 -0
- data/images/koala.jpg +3 -0
- data/images/man_tree.jpg +3 -0
- data/images/meditation.png +3 -0
- data/images/old_couple.jpg +3 -0
- data/images/owl_heart.jpg +0 -0
- data/images/raven.jpg +0 -0
- data/images/real_karate.jpeg +0 -0
- data/images/santa.jpg +0 -0
- data/images/squirrel.jpg +0 -0
- data/images/statue.jpg +3 -0
- data/images/steak.jpg +3 -0
- data/images/tennis.jpg +0 -0
- data/images/woman_book.jpg +3 -0
- data/masks/cat_hat.jpg +0 -0
- data/masks/cat_mirror.jpg +0 -0
- data/masks/girl_mountain.jpg +0 -0
- data/masks/man_tree.jpg +0 -0
- data/masks/old_couple.jpg +0 -0
- data/masks/raven.jpg +0 -0
- data/masks/santa.jpg +0 -0
- images/main_figure.png +3 -0
- img_edit.py +492 -0
- requirements.txt +12 -0
- scripts/w_ca/run_bird.sh +20 -0
- scripts/w_ca/run_cabin.sh +20 -0
- scripts/w_ca/run_car.sh +21 -0
- scripts/w_ca/run_cat_poly.sh +21 -0
- scripts/w_ca/run_flower.sh +21 -0
- scripts/w_ca/run_fruit.sh +20 -0
- scripts/w_ca/run_koala.sh +20 -0
- scripts/w_ca/run_owl_heart.sh +20 -0
- scripts/w_ca/run_statue.sh +21 -0
- scripts/w_ca/run_steak.sh +20 -0
- scripts/w_ca/run_tennis.sh +21 -0
- scripts/w_ca/run_woman_book.sh +20 -0
- scripts/w_mask/run_cat_hat.sh +21 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
data/images/cabin.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
data/images/fruit.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
data/images/koala.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
data/images/man_tree.jpg filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
data/images/meditation.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
data/images/old_couple.jpg filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
data/images/statue.jpg filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
data/images/steak.jpg filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
data/images/woman_book.jpg filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
images/main_figure.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,14 +1,68 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
|
| 2 |
+
|
| 3 |
+
### [ICCV 2025] Official Pytorch implementation of the paper: "ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation"
|
| 4 |
+
by Jimyeon Kim, Jungwon Park, Yeji Song, Nojun Kwak, Wonjong Rhee†.
|
| 5 |
+
|
| 6 |
+
Seoul National University
|
| 7 |
+
|
| 8 |
+
[Arxiv](https://arxiv.org/abs/2507.01496)
|
| 9 |
+
 
|
| 10 |
+
[Project Page](https://wlaud1001.github.io/ReFlex/)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+

|
| 15 |
+
|
| 16 |
+
## Setup
|
| 17 |
+
```
|
| 18 |
+
git clone https://github.com/wlaud1001/ReFlex.git
|
| 19 |
+
cd ReFlex
|
| 20 |
+
|
| 21 |
+
conda create -n reflex python=3.10
|
| 22 |
+
conda activate reflex
|
| 23 |
+
pip install -r requirements.txt
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
## Run
|
| 27 |
+
|
| 28 |
+
### Run exmaple
|
| 29 |
+
```
|
| 30 |
+
python img_edit.py \
|
| 31 |
+
--gpu {gpu} \
|
| 32 |
+
--seed {seed} \
|
| 33 |
+
--img_path {source_img_path} \
|
| 34 |
+
--source_prompt {source_prompt} \
|
| 35 |
+
--target_prompt {target_prompt} \
|
| 36 |
+
--results_dir {results_dir} \
|
| 37 |
+
--feature_steps {feature_steps} \
|
| 38 |
+
--attn_topk {attn_topk}
|
| 39 |
+
```
|
| 40 |
+
### Arguments
|
| 41 |
+
- --gpu: Index of the GPU to use.
|
| 42 |
+
- --seed: Random seed.
|
| 43 |
+
- --img_path: Path to the input real image to be edited.
|
| 44 |
+
- --mask_path (optional): Path to a ground-truth mask for local editing.
|
| 45 |
+
- If provided, this mask is used directly.
|
| 46 |
+
- If omitted, the editing mask is automatically generated from attention maps.
|
| 47 |
+
- --source_prompt (optional): Text prompt describing the content of the input image.
|
| 48 |
+
- If provided, mask generation and latent blending will be applied.
|
| 49 |
+
- If omitted, editing proceeds without latent blending.
|
| 50 |
+
- --target_prompt: Text prompt describing the desired edited image.
|
| 51 |
+
- --blend_word (optional): Word in --source_prompt to guide mask generation via its I2T-CA map.
|
| 52 |
+
- If omitted, the blend word is automatically inferred by comparing source_prompt and target_prompt.
|
| 53 |
+
- --results_dir: Directory to save the output images
|
| 54 |
+
###
|
| 55 |
+
|
| 56 |
+
### Scripts
|
| 57 |
+
We also provide several example scripts in the (./scripts) directory for some use cases and reproducible experiments.
|
| 58 |
+
#### Script Categories
|
| 59 |
+
- scripts/wo_ca/: Cases where the source prompt is not given. I2T-CA adaptation and latent blending are not applied.
|
| 60 |
+
- scripts/w_ca/: Cases where the source prompt is given, and the editing mask for latent blending is automatically generated from the attention map.
|
| 61 |
+
- scripts/w_mask/: Cases where a ground-truth mask for local editing is provided and directly used for latent blending.
|
| 62 |
+
|
| 63 |
+
You can run a script as follows:
|
| 64 |
+
```
|
| 65 |
+
./scripts/wo_ca/run_bear.sh
|
| 66 |
+
./scripts/w_ca/run_bird.sh
|
| 67 |
+
./scripts/w_mask/run_cat_hat.sh
|
| 68 |
+
```
|
data/images/bear.jpeg
ADDED
|
data/images/bird.jpg
ADDED
|
data/images/bird_painting.jpg
ADDED
|
data/images/cabin.jpg
ADDED
|
Git LFS Details
|
data/images/car.jpg
ADDED
|
data/images/cat_hat.jpg
ADDED
|
data/images/cat_mirror.jpg
ADDED
|
data/images/cat_poly.jpg
ADDED
|
data/images/dancing.jpeg
ADDED
|
data/images/flower.jpg
ADDED
|
data/images/fruit.jpg
ADDED
|
Git LFS Details
|
data/images/girl_mountain.jpg
ADDED
|
data/images/koala.jpg
ADDED
|
Git LFS Details
|
data/images/man_tree.jpg
ADDED
|
Git LFS Details
|
data/images/meditation.png
ADDED
|
Git LFS Details
|
data/images/old_couple.jpg
ADDED
|
Git LFS Details
|
data/images/owl_heart.jpg
ADDED
|
data/images/raven.jpg
ADDED
|
data/images/real_karate.jpeg
ADDED
|
data/images/santa.jpg
ADDED
|
data/images/squirrel.jpg
ADDED
|
data/images/statue.jpg
ADDED
|
Git LFS Details
|
data/images/steak.jpg
ADDED
|
Git LFS Details
|
data/images/tennis.jpg
ADDED
|
data/images/woman_book.jpg
ADDED
|
Git LFS Details
|
data/masks/cat_hat.jpg
ADDED
|
data/masks/cat_mirror.jpg
ADDED
|
data/masks/girl_mountain.jpg
ADDED
|
data/masks/man_tree.jpg
ADDED
|
data/masks/old_couple.jpg
ADDED
|
data/masks/raven.jpg
ADDED
|
data/masks/santa.jpg
ADDED
|
images/main_figure.png
ADDED
|
Git LFS Details
|
img_edit.py
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import gc
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
import re
|
| 6 |
+
import time
|
| 7 |
+
from distutils.util import strtobool
|
| 8 |
+
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
parser = argparse.ArgumentParser()
|
| 12 |
+
parser.add_argument(
|
| 13 |
+
"--img_path",
|
| 14 |
+
type=str,
|
| 15 |
+
)
|
| 16 |
+
parser.add_argument(
|
| 17 |
+
"--target_prompt",
|
| 18 |
+
type=str,
|
| 19 |
+
)
|
| 20 |
+
parser.add_argument(
|
| 21 |
+
"--source_prompt",
|
| 22 |
+
type=str,
|
| 23 |
+
default=''
|
| 24 |
+
)
|
| 25 |
+
parser.add_argument(
|
| 26 |
+
"--blend_word",
|
| 27 |
+
type=str,
|
| 28 |
+
default=''
|
| 29 |
+
)
|
| 30 |
+
parser.add_argument(
|
| 31 |
+
"--mask_path",
|
| 32 |
+
type=str,
|
| 33 |
+
default=None
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
parser.add_argument(
|
| 38 |
+
"--gpu",
|
| 39 |
+
type=str,
|
| 40 |
+
default="0",
|
| 41 |
+
)
|
| 42 |
+
parser.add_argument(
|
| 43 |
+
"--seed",
|
| 44 |
+
type=int,
|
| 45 |
+
default=0
|
| 46 |
+
)
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
"--results_dir",
|
| 49 |
+
type=str,
|
| 50 |
+
default='results'
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
parser.add_argument(
|
| 55 |
+
"--model",
|
| 56 |
+
type=str,
|
| 57 |
+
default='flux',
|
| 58 |
+
choices=['flux']
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
parser.add_argument(
|
| 62 |
+
"--ca_steps",
|
| 63 |
+
type=int,
|
| 64 |
+
default=10,
|
| 65 |
+
help="Number of steps to apply I2T-CA adaptation and injection.",
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
parser.add_argument(
|
| 69 |
+
"--sa_steps",
|
| 70 |
+
type=int,
|
| 71 |
+
default=7
|
| 72 |
+
help="Number of steps to apply I2I-SA adaptation and injection.",
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
parser.add_argument(
|
| 76 |
+
"--feature_steps",
|
| 77 |
+
type=int,
|
| 78 |
+
default=5
|
| 79 |
+
help="Number of steps to inject residual features.",
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
parser.add_argument(
|
| 84 |
+
"--ca_attn_layer_from",
|
| 85 |
+
type=int,
|
| 86 |
+
default=13,
|
| 87 |
+
help="Layers to apply I2T-CA adaptation and injection.",
|
| 88 |
+
)
|
| 89 |
+
parser.add_argument(
|
| 90 |
+
"--ca_attn_layer_to",
|
| 91 |
+
type=int,
|
| 92 |
+
default=45,
|
| 93 |
+
help="Layers to apply I2T-CA adaptation and injection.",
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
parser.add_argument(
|
| 97 |
+
"--sa_attn_layer_from",
|
| 98 |
+
type=int,
|
| 99 |
+
default=20,
|
| 100 |
+
help="Layers to apply I2I-SA adaptation and injection.",
|
| 101 |
+
)
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"--sa_attn_layer_to",
|
| 104 |
+
type=int,
|
| 105 |
+
default=45,
|
| 106 |
+
help="Layers to apply I2I-SA adaptation and injection.",
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--feature_layer_from",
|
| 111 |
+
type=int,
|
| 112 |
+
default=13,
|
| 113 |
+
help="Layers to inject residual features.",
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--feature_layer_to",
|
| 117 |
+
type=int,
|
| 118 |
+
default=20,
|
| 119 |
+
help="Layers to inject residual features.",
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
parser.add_argument(
|
| 123 |
+
"--flow_steps",
|
| 124 |
+
type=int,
|
| 125 |
+
default=7,
|
| 126 |
+
help="Steps to apply forward step before inversion",
|
| 127 |
+
)
|
| 128 |
+
parser.add_argument(
|
| 129 |
+
"--step_start",
|
| 130 |
+
type=int,
|
| 131 |
+
default=0
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
parser.add_argument(
|
| 136 |
+
"--num_inference_steps",
|
| 137 |
+
type=int,
|
| 138 |
+
default=28
|
| 139 |
+
)
|
| 140 |
+
parser.add_argument(
|
| 141 |
+
"--guidance_scale",
|
| 142 |
+
type=float,
|
| 143 |
+
default=3.5,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
parser.add_argument(
|
| 147 |
+
"--attn_topk",
|
| 148 |
+
type=int,
|
| 149 |
+
default=20,
|
| 150 |
+
help="Hyperparameter for I2I-SA adaptaion."
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
parser.add_argument(
|
| 154 |
+
"--text_scale",
|
| 155 |
+
type=float,
|
| 156 |
+
default=4,
|
| 157 |
+
help="Hyperparameter for I2T-CA adaptaion."
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
parser.add_argument(
|
| 161 |
+
"--mid_step_index",
|
| 162 |
+
type=int,
|
| 163 |
+
default=14,
|
| 164 |
+
help="Hyperparameter for mid-step feature extraction."
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
parser.add_argument(
|
| 169 |
+
"--use_mask",
|
| 170 |
+
type=strtobool,
|
| 171 |
+
default=True
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
parser.add_argument(
|
| 175 |
+
"--use_ca_mask",
|
| 176 |
+
type=strtobool,
|
| 177 |
+
default=True
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
parser.add_argument(
|
| 181 |
+
"--mask_steps",
|
| 182 |
+
type=int,
|
| 183 |
+
default=18,
|
| 184 |
+
help="Steps to apply latent blending"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
parser.add_argument(
|
| 188 |
+
"--mask_dilation",
|
| 189 |
+
type=int,
|
| 190 |
+
default=3
|
| 191 |
+
)
|
| 192 |
+
parser.add_argument(
|
| 193 |
+
"--mask_nbins",
|
| 194 |
+
type=int,
|
| 195 |
+
default=128
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
args = parser.parse_args()
|
| 199 |
+
|
| 200 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu}"
|
| 201 |
+
|
| 202 |
+
import gc
|
| 203 |
+
|
| 204 |
+
import matplotlib.pyplot as plt
|
| 205 |
+
import numpy as np
|
| 206 |
+
import torch
|
| 207 |
+
import yaml
|
| 208 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 209 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 210 |
+
from PIL import Image
|
| 211 |
+
|
| 212 |
+
from src.attn_utils.attn_utils import AttentionAdapter, AttnCollector
|
| 213 |
+
from src.attn_utils.flux_attn_processor import NewFluxAttnProcessor2_0
|
| 214 |
+
from src.attn_utils.seq_aligner import get_refinement_mapper
|
| 215 |
+
from src.callback.callback_fn import CallbackAll
|
| 216 |
+
from src.inversion.inverse import get_inversed_latent_list
|
| 217 |
+
from src.inversion.scheduling_flow_inverse import \
|
| 218 |
+
FlowMatchEulerDiscreteForwardScheduler
|
| 219 |
+
from src.pipeline.flux_pipeline import NewFluxPipeline
|
| 220 |
+
from src.transformer_utils.transformer_utils import (FeatureCollector,
|
| 221 |
+
FeatureReplace)
|
| 222 |
+
from src.utils import (find_token_id_differences, find_word_token_indices,
|
| 223 |
+
get_flux_pipeline, mask_decode, mask_interpolate)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def fix_seed(random_seed):
|
| 227 |
+
"""
|
| 228 |
+
fix seed to control any randomness from a code
|
| 229 |
+
(enable stability of the experiments' results.)
|
| 230 |
+
"""
|
| 231 |
+
torch.manual_seed(random_seed)
|
| 232 |
+
torch.cuda.manual_seed(random_seed)
|
| 233 |
+
torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
|
| 234 |
+
torch.backends.cudnn.deterministic = True
|
| 235 |
+
torch.backends.cudnn.benchmark = False
|
| 236 |
+
np.random.seed(random_seed)
|
| 237 |
+
random.seed(random_seed)
|
| 238 |
+
|
| 239 |
+
def main(args):
|
| 240 |
+
fix_seed(args.seed)
|
| 241 |
+
device = torch.device('cuda')
|
| 242 |
+
|
| 243 |
+
pipe = get_flux_pipeline(pipeline_class=NewFluxPipeline)
|
| 244 |
+
attn_proc = NewFluxAttnProcessor2_0
|
| 245 |
+
pipe = pipe.to(device)
|
| 246 |
+
|
| 247 |
+
layer_order = range(57)
|
| 248 |
+
|
| 249 |
+
ca_layer_list = layer_order[args.ca_attn_layer_from:args.ca_attn_layer_to]
|
| 250 |
+
sa_layer_list = layer_order[args.feature_layer_to:args.sa_attn_layer_to]
|
| 251 |
+
feature_layer_list = layer_order[args.feature_layer_from:args.feature_layer_to]
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
img_path = args.img_path
|
| 255 |
+
source_img = Image.open(img_path).resize((1024, 1024)).convert("RGB")
|
| 256 |
+
img_base_name = os.path.splitext(img_path)[0].split('/')[-1]
|
| 257 |
+
result_img_dir = f"{args.results_dir}/seed_{args.seed}/{args.target_prompt}"
|
| 258 |
+
|
| 259 |
+
source_prompt = args.source_prompt
|
| 260 |
+
target_prompt = args.target_prompt
|
| 261 |
+
prompts = [source_prompt, target_prompt]
|
| 262 |
+
|
| 263 |
+
print(prompts)
|
| 264 |
+
mask = None
|
| 265 |
+
|
| 266 |
+
if args.use_mask:
|
| 267 |
+
use_mask = True
|
| 268 |
+
|
| 269 |
+
if args.mask_path is not None:
|
| 270 |
+
mask = Image.open(args.mask_path)
|
| 271 |
+
mask = torch.tensor(np.array(mask)).bool()
|
| 272 |
+
mask = mask.to(device)
|
| 273 |
+
|
| 274 |
+
# Increase the latent blending steps if the ground truth mask is used.
|
| 275 |
+
args.mask_steps = int(args.num_inference_steps * 0.9)
|
| 276 |
+
|
| 277 |
+
source_ca_index = None
|
| 278 |
+
target_ca_index = None
|
| 279 |
+
use_ca_mask = False
|
| 280 |
+
|
| 281 |
+
elif args.use_ca_mask and source_prompt:
|
| 282 |
+
mask = None
|
| 283 |
+
if args.blend_word and args.blend_word in source_prompt:
|
| 284 |
+
editing_source_token_index = find_word_token_indices(source_prompt, args.blend_word, pipe.tokenizer_2)
|
| 285 |
+
editing_target_token_index = None
|
| 286 |
+
else:
|
| 287 |
+
editing_tokens_info = find_token_id_differences(*prompts, pipe.tokenizer_2)
|
| 288 |
+
editing_source_token_index = editing_tokens_info['prompt_1']['index']
|
| 289 |
+
editing_target_token_index = editing_tokens_info['prompt_2']['index']
|
| 290 |
+
|
| 291 |
+
use_ca_mask = True
|
| 292 |
+
if editing_source_token_index:
|
| 293 |
+
source_ca_index = editing_source_token_index
|
| 294 |
+
target_ca_index = None
|
| 295 |
+
elif editing_target_token_index:
|
| 296 |
+
source_ca_index = None
|
| 297 |
+
target_ca_index = editing_target_token_index
|
| 298 |
+
else:
|
| 299 |
+
source_ca_index = None
|
| 300 |
+
target_ca_index = None
|
| 301 |
+
use_ca_mask = False
|
| 302 |
+
|
| 303 |
+
else:
|
| 304 |
+
source_ca_index = None
|
| 305 |
+
target_ca_index = None
|
| 306 |
+
use_ca_mask = False
|
| 307 |
+
|
| 308 |
+
else:
|
| 309 |
+
use_mask = False
|
| 310 |
+
use_ca_mask = False
|
| 311 |
+
source_ca_index = None
|
| 312 |
+
target_ca_index = None
|
| 313 |
+
|
| 314 |
+
if source_prompt:
|
| 315 |
+
# Use I2T-CA injection
|
| 316 |
+
mappers, alphas = get_refinement_mapper(prompts, pipe.tokenizer_2, max_len=512)
|
| 317 |
+
mappers = mappers.to(device=device)
|
| 318 |
+
alphas = alphas.to(device=device, dtype=pipe.dtype)
|
| 319 |
+
alphas = alphas[:, None, None, :]
|
| 320 |
+
|
| 321 |
+
ca_steps = args.ca_steps
|
| 322 |
+
attn_adj_from = 1
|
| 323 |
+
|
| 324 |
+
else:
|
| 325 |
+
# Not use I2T-CA injection
|
| 326 |
+
mappers = None
|
| 327 |
+
alphas = None
|
| 328 |
+
|
| 329 |
+
ca_steps = 0
|
| 330 |
+
attn_adj_from=3
|
| 331 |
+
|
| 332 |
+
sa_steps = args.sa_steps
|
| 333 |
+
feature_steps = args.feature_steps
|
| 334 |
+
|
| 335 |
+
attn_controller = AttentionAdapter(
|
| 336 |
+
ca_layer_list=ca_layer_list,
|
| 337 |
+
sa_layer_list=sa_layer_list,
|
| 338 |
+
ca_steps=ca_steps,
|
| 339 |
+
sa_steps=sa_steps,
|
| 340 |
+
method='replace_topk',
|
| 341 |
+
topk=args.attn_topk,
|
| 342 |
+
text_scale=args.text_scale,
|
| 343 |
+
mappers=mappers,
|
| 344 |
+
alphas=alphas,
|
| 345 |
+
attn_adj_from=attn_adj_from,
|
| 346 |
+
save_source_ca=source_ca_index is not None,
|
| 347 |
+
save_target_ca=target_ca_index is not None,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
attn_collector = AttnCollector(
|
| 351 |
+
transformer=pipe.transformer,
|
| 352 |
+
controller=attn_controller,
|
| 353 |
+
attn_processor_class=NewFluxAttnProcessor2_0,
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
feature_controller = FeatureReplace(
|
| 357 |
+
layer_list=feature_layer_list,
|
| 358 |
+
feature_steps=feature_steps,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
feature_collector = FeatureCollector(
|
| 362 |
+
transformer=pipe.transformer,
|
| 363 |
+
controller=feature_controller,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
num_prompts=len(prompts)
|
| 367 |
+
|
| 368 |
+
shape = (1, 16, 128, 128)
|
| 369 |
+
generator = torch.Generator(device=device).manual_seed(args.seed)
|
| 370 |
+
latents = randn_tensor(shape, device=device, generator=generator)
|
| 371 |
+
latents = pipe._pack_latents(latents, *latents.shape)
|
| 372 |
+
|
| 373 |
+
attn_collector.restore_orig_attention()
|
| 374 |
+
feature_collector.restore_orig_transformer()
|
| 375 |
+
|
| 376 |
+
t0 = time.perf_counter()
|
| 377 |
+
|
| 378 |
+
inv_latents = get_inversed_latent_list(
|
| 379 |
+
pipe,
|
| 380 |
+
source_img,
|
| 381 |
+
random_noise=latents,
|
| 382 |
+
num_inference_steps=args.num_inference_steps,
|
| 383 |
+
backward_method="ode",
|
| 384 |
+
use_prompt_for_inversion=False,
|
| 385 |
+
guidance_scale_for_inversion=0,
|
| 386 |
+
prompt_for_inversion='',
|
| 387 |
+
flow_steps=args.flow_steps,
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
source_latents = inv_latents[::-1]
|
| 391 |
+
target_latents = inv_latents[::-1]
|
| 392 |
+
|
| 393 |
+
attn_collector.register_attention_control()
|
| 394 |
+
feature_collector.register_transformer_control()
|
| 395 |
+
|
| 396 |
+
callback_fn = CallbackAll(
|
| 397 |
+
latents=source_latents,
|
| 398 |
+
attn_collector=attn_collector,
|
| 399 |
+
feature_collector=feature_collector,
|
| 400 |
+
feature_inject_steps=feature_steps,
|
| 401 |
+
mid_step_index=args.mid_step_index,
|
| 402 |
+
step_start=args.step_start,
|
| 403 |
+
use_mask=use_mask,
|
| 404 |
+
use_ca_mask=use_ca_mask,
|
| 405 |
+
source_ca_index=source_ca_index,
|
| 406 |
+
target_ca_index=target_ca_index,
|
| 407 |
+
mask_kwargs={'dilation': args.mask_dilation},
|
| 408 |
+
mask_steps=args.mask_steps,
|
| 409 |
+
mask=mask,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
init_latent = target_latents[args.step_start]
|
| 413 |
+
init_latent = init_latent.repeat(num_prompts, 1, 1)
|
| 414 |
+
init_latent[0] = source_latents[args.mid_step_index]
|
| 415 |
+
|
| 416 |
+
os.makedirs(result_img_dir, exist_ok=True)
|
| 417 |
+
pipe.scheduler = FlowMatchEulerDiscreteForwardScheduler.from_config(
|
| 418 |
+
pipe.scheduler.config,
|
| 419 |
+
step_start=args.step_start,
|
| 420 |
+
margin_index_from_image=0
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
attn_controller.reset()
|
| 424 |
+
feature_controller.reset()
|
| 425 |
+
attn_controller.text_scale = args.text_scale
|
| 426 |
+
attn_controller.cur_step = args.step_start
|
| 427 |
+
feature_controller.cur_step = args.step_start
|
| 428 |
+
|
| 429 |
+
with torch.no_grad():
|
| 430 |
+
images = pipe(
|
| 431 |
+
prompts,
|
| 432 |
+
latents=init_latent,
|
| 433 |
+
num_images_per_prompt=1,
|
| 434 |
+
guidance_scale=args.guidance_scale,
|
| 435 |
+
num_inference_steps=args.num_inference_steps,
|
| 436 |
+
generator=generator,
|
| 437 |
+
callback_on_step_end=callback_fn,
|
| 438 |
+
mid_step_index=args.mid_step_index,
|
| 439 |
+
step_start=args.step_start,
|
| 440 |
+
callback_on_step_end_tensor_inputs=['latents'],
|
| 441 |
+
).images
|
| 442 |
+
|
| 443 |
+
t1 = time.perf_counter()
|
| 444 |
+
print(f"Done in {t1 - t0:.1f}s.")
|
| 445 |
+
|
| 446 |
+
source_img_path = os.path.join(result_img_dir, f"source.png")
|
| 447 |
+
source_img.save(source_img_path)
|
| 448 |
+
|
| 449 |
+
for i, img in enumerate(images[1:]):
|
| 450 |
+
target_img_path = os.path.join(result_img_dir, f"target_{i}.png")
|
| 451 |
+
img.save(target_img_path)
|
| 452 |
+
|
| 453 |
+
target_text_path = os.path.join(result_img_dir, f"target_prompts.txt")
|
| 454 |
+
with open(target_text_path, 'w') as file:
|
| 455 |
+
file.write(target_prompt + '\n')
|
| 456 |
+
|
| 457 |
+
source_text_path = os.path.join(result_img_dir, f"source_prompt.txt")
|
| 458 |
+
with open(source_text_path, 'w') as file:
|
| 459 |
+
file.write(source_prompt + '\n')
|
| 460 |
+
|
| 461 |
+
images = [source_img] + images
|
| 462 |
+
|
| 463 |
+
fs=3
|
| 464 |
+
n = len(images)
|
| 465 |
+
fig, ax = plt.subplots(1, n, figsize=(n*fs, 1*fs))
|
| 466 |
+
|
| 467 |
+
for i, img in enumerate(images):
|
| 468 |
+
ax[i].imshow(img)
|
| 469 |
+
|
| 470 |
+
ax[0].set_title('source')
|
| 471 |
+
ax[1].set_title(source_prompt, fontsize=7)
|
| 472 |
+
ax[2].set_title(target_prompt, fontsize=7)
|
| 473 |
+
|
| 474 |
+
overall_img_path = os.path.join(result_img_dir, f"overall.png")
|
| 475 |
+
plt.savefig(overall_img_path, bbox_inches='tight')
|
| 476 |
+
plt.close()
|
| 477 |
+
|
| 478 |
+
mask_save_dir = os.path.join(result_img_dir, f"mask")
|
| 479 |
+
os.makedirs(mask_save_dir, exist_ok=True)
|
| 480 |
+
|
| 481 |
+
if use_ca_mask:
|
| 482 |
+
ca_mask_path = os.path.join(mask_save_dir, f"mask_ca.png")
|
| 483 |
+
mask_img = Image.fromarray((callback_fn.mask.cpu().float().numpy() * 255).astype(np.uint8)).convert('L')
|
| 484 |
+
mask_img.save(ca_mask_path)
|
| 485 |
+
|
| 486 |
+
del inv_latents
|
| 487 |
+
del init_latent
|
| 488 |
+
gc.collect()
|
| 489 |
+
torch.cuda.empty_cache()
|
| 490 |
+
|
| 491 |
+
if __name__ == '__main__':
|
| 492 |
+
main(args)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.31.0
|
| 2 |
+
torch==2.4.1
|
| 3 |
+
pandas
|
| 4 |
+
matplotlib
|
| 5 |
+
transformers==4.44.2
|
| 6 |
+
torchao
|
| 7 |
+
torchvision
|
| 8 |
+
opencv-python
|
| 9 |
+
scikit-image
|
| 10 |
+
accelerate
|
| 11 |
+
sentencepiece
|
| 12 |
+
protobuf
|
scripts/w_ca/run_bird.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a blue and white bird sits on a branch'
|
| 2 |
+
target_prompt='a blue and white butterfly sits on a branch'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 3 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/bird.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/bird' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_cabin.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a painting of a cabin in the snow with mountains in the background'
|
| 2 |
+
target_prompt='a painting of a car in the snow with mountains in the background'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=40
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 3 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/cabin.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/cabin' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_car.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a sports car driving down the street'
|
| 2 |
+
target_prompt='stained glass window of a sports car driving down the street'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=10
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 1 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/car.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/car' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--use_mask 0 \
|
| 21 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_cat_poly.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a cat is shown in a low polygonal style'
|
| 2 |
+
target_prompt='a fox is shown in a low polygonal style'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 1 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/cat_poly.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/cat_poly' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
| 21 |
+
|
scripts/w_ca/run_flower.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a pink flower with yellow center in the middle'
|
| 2 |
+
target_prompt='a blue flower with red center in the middle'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 1 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/flower.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/flower' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk \
|
| 21 |
+
--blend_word 'flower'
|
scripts/w_ca/run_fruit.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='white plate with fruits on it'
|
| 2 |
+
target_prompt='white plate with pizza on it'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=40
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 0 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/fruit.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/fruit' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_koala.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a koala is sitting on a tree'
|
| 2 |
+
target_prompt='a koala and a bird is sitting on a tree'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=40
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 3 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/koala.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/koala' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_owl_heart.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a cartoon painting of a cute owl with a heart on its body'
|
| 2 |
+
target_prompt='a cartoon painting of a cute owl with a circle on its body'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 1 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/owl_heart.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/owl_heart' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_statue.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='photo of a statue in front view'
|
| 2 |
+
target_prompt='photo of a statue in side view'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=60
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 0 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/statue.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/statue' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk \
|
| 21 |
+
--blend_word 'statue'
|
scripts/w_ca/run_steak.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a plate with steak on it'
|
| 2 |
+
target_prompt='a plate with salmon on it'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=40
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 0 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/steak.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/steak' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_ca/run_tennis.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a woman in a black tank top and pink shorts is about to hit a tennis ball'
|
| 2 |
+
target_prompt='a iron woman robot in a black tank top and pink shorts is about to hit a tennis ball'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 0 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/tennis.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/tennis' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk \
|
| 21 |
+
--blend_word 'woman'
|
scripts/w_ca/run_woman_book.sh
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a woman sitting in the grass with a book'
|
| 2 |
+
target_prompt='a woman sitting in the grass with a laptop'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 1 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/woman_book.jpg' \
|
| 14 |
+
--source_prompt "$source_prompt" \
|
| 15 |
+
--target_prompt "$target_prompt" \
|
| 16 |
+
--results_dir 'results/woman_book' \
|
| 17 |
+
--ca_steps $ca_steps \
|
| 18 |
+
--sa_steps $sa_steps \
|
| 19 |
+
--feature_steps $feature_steps \
|
| 20 |
+
--attn_topk $attn_topk
|
scripts/w_mask/run_cat_hat.sh
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
source_prompt='a cat wearing a pink hat'
|
| 2 |
+
target_prompt='a tiger wearing a pink hat'
|
| 3 |
+
|
| 4 |
+
ca_steps=10
|
| 5 |
+
sa_steps=7
|
| 6 |
+
feature_steps=5
|
| 7 |
+
|
| 8 |
+
attn_topk=20
|
| 9 |
+
|
| 10 |
+
python img_edit.py \
|
| 11 |
+
--gpu 3 \
|
| 12 |
+
--seed 0 \
|
| 13 |
+
--img_path 'data/images/cat_hat.jpg' \
|
| 14 |
+
--mask_path 'data/masks/cat_hat.jpg' \
|
| 15 |
+
--source_prompt "$source_prompt" \
|
| 16 |
+
--target_prompt "$target_prompt" \
|
| 17 |
+
--results_dir 'results/cat_hat' \
|
| 18 |
+
--ca_steps $ca_steps \
|
| 19 |
+
--sa_steps $sa_steps \
|
| 20 |
+
--feature_steps $feature_steps \
|
| 21 |
+
--attn_topk $attn_topk
|